Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
IEEE Trans Biomed Eng ; 71(6): 1745-1755, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38206785

RESUMO

INTRODUCTION: Transcranial magnetic stimulation (TMS) is a popular method for the noninvasive stimulation of neurons in the brain. It has become a standard instrument in experimental brain research and has been approved for a range of diagnostic and therapeutic applications. These applications require appropriately shaped coils. Various applications have been established or approved for specific coil designs with their corresponding spatial electric field distributions. However, the specific coil implementation may no longer be appropriate from the perspective of available material and manufacturing opportunities or considering the latest understanding of how to achieve induced electric fields in the head most efficiently. Furthermore, in some cases, field measurements of coils with unknown winding or a user-defined field are available and require an actual implementation. Similar applications exist for magnetic resonance imaging coils. OBJECTIVE: This work aims at introducing a complete formalism free from heuristics, iterative optimization, and ad-hoc or manual steps to form practical stimulation coils with individual turns to either equivalently match an existing coil or produce a given field. The target coil can reside on practically any sufficiently large or closed surface adjacent to or around the head. METHODS: The method derives an equivalent field through vector projection exploiting the well-known Huygens' and Love's equivalence principle. In contrast to other coil design or optimization approaches recently presented, the procedure is an explicit forward Hilbert-space vector projection or basis change. For demonstration, we map a commercial figure-of-eight coil as one of the most widely used devices and a more intricate coil recently approved clinically for addiction treatment (H4) onto a bent surface close to the head for highest efficiency and lowest field energy. RESULTS: The resulting projections are within ≤4% of the target field and reduce the necessary pulse energy by more than 40%.


Assuntos
Desenho de Equipamento , Estimulação Magnética Transcraniana , Estimulação Magnética Transcraniana/métodos , Estimulação Magnética Transcraniana/instrumentação , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cabeça/diagnóstico por imagem , Simulação por Computador , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA