Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Rep ; 13(1): 20681, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001120

RESUMO

Shock Ignition is a two-step scheme to reach Inertial Confinement Fusion, where the precompressed fuel capsule is ignited by a strong shock driven by a laser pulse at an intensity in the order of [Formula: see text] W/cm[Formula: see text]. In this report we describe the results of an experiment carried out at PALS laser facility designed to investigate the origin of hot electrons in laser-plasma interaction at intensities and plasma temperatures expected for Shock Ignition. A detailed time- and spectrally-resolved characterization of Stimulated Raman Scattering and Two Plasmon Decay instabilities, as well as of the generated hot electrons, suggest that Stimulated Raman Scattering is the dominant source of hot electrons via the damping of daughter plasma waves. The temperature dependence of laser plasma instabilities was also investigated, enabled by the use of different ablator materials, suggesting that Two Plasmon Decay is damped at earlier times for higher plasma temperatures, accompanied by an earlier ignition of SRS. The identification of the predominant hot electron source and the effect of plasma temperature on laser plasma interaction, here investigated, are extremely useful for developing the mitigation strategies for reducing the impact of hot electrons on the fuel ignition.

2.
Rev Sci Instrum ; 93(6): 063505, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778032

RESUMO

The shock ignition (SI) approach to inertial confinement fusion is a promising scheme for achieving energy production by nuclear fusion. SI relies on using a high intensity laser pulse (≈1016 W/cm2, with a duration of several hundred ps) at the end of the fuel compression stage. However, during laser-plasma interaction (LPI), several parametric instabilities, such as stimulated Raman scattering and two plasmon decay, nonlinearly generate hot electrons (HEs). The whole behavior of HE under SI conditions, including their generation, transport, and final absorption, is still unclear and needs further experimental investigation. This paper focuses on the development of an experimental platform for SI-related experiments, which simultaneously makes use of multiple diagnostics to characterize LPI and HE generation, transport, and energy deposition. Such diagnostics include optical spectrometers, streaked optical shadowgraph, an x-ray pinhole camera, a two-dimensional x-ray imager, a Cu Kα line spectrometer, two hot-electron spectrometers, a hard x-ray (bremsstrahlung) detector, and a streaked optical pyrometer. Diagnostics successfully operated simultaneously in single-shot mode, revealing the features of HEs under SI-relevant conditions.

3.
Rev Sci Instrum ; 92(1): 013501, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33514221

RESUMO

We report on the optimization of a BremsStrahlung Cannon (BSC) design for the investigation of laser-driven fast electron populations in a shock ignition relevant experimental campaign at the Laser Megajoule-PETawatt Aquitaine Laser facility. In this regime with laser intensities of 1015 W/cm2-1016 W/cm2, fast electrons with energies ≤100 keV are expected to be generated through Stimulated Raman Scattering (SRS) and Two Plasmon Decay (TPD) instabilities. The main purpose of the BSC in our experiment is to identify the contribution to x-ray emission from bremsstrahlung of fast electrons originating from SRS and TPD, with expected temperatures of 40 keV and 95 keV, respectively. Data analysis and reconstruction of the distributions of x-ray photons incident on the BSC are described.

4.
Sci Rep ; 7(1): 8347, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827645

RESUMO

The transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50-µm thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~1020 W/cm2. The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear. An annular magnetic field profile was observed ~5 ps after the interaction, indicating a relatively smooth hot electron distribution at the rear-side of the plastic target. This is contrary to previous time-integrated measurements, which infer that such targets will produce highly structured hot electron transport. We measured large-scale filamentation of the hot electron distribution at the target rear only at later time-scales of ~10 ps, resulting in a commensurate large-scale filamentation of the magnetic field profile. Three-dimensional hybrid simulations corroborate our experimental observations and demonstrate a beam-like hot electron transport at initial time-scales that may be attributed to the local resistivity profile at the target rear.

5.
Rev Sci Instrum ; 87(2): 02A909, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931970

RESUMO

An experimental campaign aiming at investigating the ion acceleration mechanisms through laser-matter interaction in femtosecond domain has been carried out at the Intense Laser Irradiation Laboratory facility with a laser intensity of up to 2 × 10(19) W/cm(2). A Thomson parabola spectrometer was used to obtain the spectra of the ions of the different species accelerated. Here, we show the energy spectra of light-ions and we discuss their dependence on structural characteristics of the target and the role of surface and target bulk in the acceleration process.

6.
Nat Commun ; 6: 8742, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26541650

RESUMO

Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.

7.
Artigo em Inglês | MEDLINE | ID: mdl-23496627

RESUMO

Spatially resolved K-shell spectroscopy is used here to investigate the interaction of an ultrashort laser pulse (λ=800 nm, τ=40 fs) with a Ti foil under intense irradiation (Iλ(2)=2×10(18)Wµm(2)cm(-2)) and the following fast electron generation and transport into the target. The effect of laser pulse polarization (p, s, and circular) on the Kα yield and line shape is probed. The radial structure of intensity and width of the lines, obtained by a discretized Abel deconvolution algorithm, suggests an annular distribution of both the hot electron propagation into the target and the target temperature. An accurate modeling of Kα line shapes was performed, revealing temperature gradients, going from a few eV up to 15-20 eV, depending on the pulse polarization. Results are discussed in terms of mechanisms of hot electron generation and of their transport through the preplasma in front of the target.


Assuntos
Lasers , Modelos Químicos , Gases em Plasma/química , Gases em Plasma/efeitos da radiação , Simulação por Computador , Raios X
8.
Neuroscience ; 221: 182-92, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22750208

RESUMO

Accumulating evidence supports the hypothesis of ecstasy and amphetamine exhibiting neurotoxic properties in human recreational users. The extent and exact location of neuronal degeneration might also be associated with a specific profile of cognitive deterioration described in polydrug users. Voxel-based morphometry and cortical thickness analyses constantly gain attention for answering the question of associated neurological sequelae. We aimed to evaluate the integrity of cortical and subcortical structures in three groups that differ in the consumption of amphetamine-type stimulants. Cortical thickness, cortical grey matter volume and the shape of supposedly vulnerable subcortical structures were compared between 20 experienced users, 42 users with little exposure to these substances and 16 drug- naïve controls. Cortical thinning in experienced users compared to drug-naïve controls and low-exposure users was observed in medio-frontal regions. Effects of ecstasy and amphetamine on cortical volume were similar to those of cortical thickness, with volume reductions primarily in frontal, but also in occipital and parietal regions of low exposure and experienced users. These effects were differently lateralized for the different comparisons. The investigation of subcortical structures revealed non-significant bilateral shape differences in the hippocampi. Our data support the hypothesis that massive recreational amphetamine-type stimulant polydrug use is associated with a thinning of cortical grey matter. Disrupted neuronal integrity in frontal regions does fit well into models of addiction and the cognitive deterioration in amphetamine-type stimulant polydrug users. The exact neurotoxic mechanisms of polydrug ecstasy and amphetamine use, however, remain speculative.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/patologia , Anfetaminas/efeitos adversos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Adulto , Análise de Variância , Relação Dose-Resposta a Droga , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
9.
Scanning ; 34(4): 221-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22076793

RESUMO

We report the investigation of the interfaces between microneedle arrays and cell cultures in patch-on-chip systems by using Focused Ion Beam (FIB) preparation and Scanning Electron Microscopy (SEM). First, FIB preparations of micro chips are made to determine the size and shape of the designed microneedles. In this essay, we investigate the cell-substrate interaction, especially the cell adhesion, and the microneedle's potential cell penetration. For this purpose, cross-sectional preparation of these hard/soft hybrid structures is performed by the FIB technology. By applying the FIB technology followed by high-resolution imaging with SEM, new insights into the cell-substrate interface can be received. One can clearly distinguish between cells that are only in contact with microneedles and cells that are penetrated by microneedles. A stack of slice images is collected by the application of the slice-and-view setup during FIB preparation and is used for three-dimensional reconstruction of cells and micro-needles.


Assuntos
Adesão Celular , Fibroblastos/fisiologia , Microscopia Eletrônica de Varredura/métodos , Manejo de Espécimes/métodos , Animais , Camundongos
10.
Phys Rev Lett ; 107(6): 065004, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21902333

RESUMO

Fast electrons produced by a 10 ps, 160 J laser pulse through laser-compressed plastic cylinders are studied experimentally and numerically in the context of fast ignition. K(α)-emission images reveal a collimated or scattered electron beam depending on the initial density and the compression timing. A numerical transport model shows that implosion-driven electrical resistivity gradients induce strong magnetic fields able to guide the electrons. The good agreement with measured beam sizes provides the first experimental evidence for fast-electron magnetic collimation in laser-compressed matter.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(3 Pt 2): 036403, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17025750

RESUMO

We use optical interferometry to investigate ultrafast ionization induced by an intense, ultrashort laser pulse propagating in a helium gas. Besides standard phase shift information, our interferograms show a localized region of fringe visibility depletion (FVD) that moves along the laser propagation axis at luminal velocity. We find that such a loss of visibility can be quantitatively explained by the ultrafast change of refractive index due to the field ionization of the gas in the laser pulse width. We demonstrate that by combining the post facto phase shift distribution with the probe pulse transit effect in the ionizing region, the analysis of the observed FVD yields significant information on the ultrafast dynamics of propagation of the ionization front in the gas.

12.
Int J Clin Exp Hypn ; 37(3): 207-16, 1989 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-2753572

RESUMO

25 phobic Ss were administered the Stanford Hypnotic Susceptibility Scale, Form C (SHSS:C) of Weitzenhoffer and E. R. Hilgard (1962). The mean SHSS:C score was 3.5 (S.D. = 2.6), which was lower than that obtained by comparison groups. The results are in direct opposition to previous results and the predictions of Frankel (1974; Frankel & M. T. Orne, 1976). Potential explanations for the discrepancy in results are discussed, including the possibility that previous studies used unrepresentative samples of phobics. It is suggested that hypnosis may sometimes play a role in the production of phobic symptoms but that other processes must be considered as well.


Assuntos
Hipnose , Transtornos Fóbicos/psicologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Psicológicos , Personalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA