RESUMO
PURPOSE: Isolated REM sleep behaviour disorder (iRBD) patients are at high risk of developing clinical syndromes of the α-synuclein spectrum. Progression markers are needed to determine the neurodegenerative changes and to predict their conversion. Brain imaging with 18F-FDG PET in iRBD is promising, but longitudinal studies are scarce. We investigated the regional brain changes in iRBD over time, related to phenoconversion. METHODS: Twenty iRBD patients underwent two consecutive 18F-FDG PET brain scans and clinical assessments (3.7 ± 0.6 years apart). Seventeen patients also underwent 123I-MIBG and 123I-FP-CIT SPECT scans at baseline. Four subjects phenoconverted to Parkinson's disease (PD) during follow-up. 18F-FDG PET scans were compared to controls with a voxel-wise single-subject procedure. The relationship between regional brain changes in metabolism and PD-related pattern scores (PDRP) was investigated. RESULTS: Individual hypometabolism t-maps revealed three scenarios: (1) normal 18F-FDG PET scans at baseline and follow-up (N = 10); (2) normal scans at baseline but occipital or occipito-parietal hypometabolism at follow-up (N = 4); (3) occipital hypometabolism at baseline and follow-up (N = 6). All patients in the last group had pathological 123I-MIBG and 123I-FP-CIT SPECT. iRBD converters (N = 4) showed occipital hypometabolism at baseline (third scenario). At the group level, hypometabolism in the frontal and occipito-parietal regions and hypermetabolism in the cerebellum and limbic regions were progressive over time. PDRP z-scores increased over time (0.54 ± 0.36 per year). PDRP expression was driven by occipital hypometabolism and cerebellar hypermetabolism. CONCLUSIONS: Our results suggest that occipital hypometabolism at baseline in iRBD implies a short-term conversion to PD. This might help in stratification strategies for disease-modifying trials.
Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Humanos , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Fluordesoxiglucose F18 , 3-Iodobenzilguanidina , Tomografia por Emissão de Pósitrons/métodos , Fatores de RiscoRESUMO
BACKGROUND: Isolated rapid eye movement sleep behavior disorder (iRBD) is prodromal for α-synucleinopathies. OBJECTIVE: The aim of this study was to determine whether pathological cardiac [123 I]meta-iodobenzylguanidine scintigraphy ([123 I]MIBG) is associated with progression of [18 F]fluorodeoxyglucose-positron emission tomography-based Parkinson's disease (PD)-related brain pattern (PDRP) expression in iRBD. METHODS: Seventeen subjects with iRBD underwent [18 F]fluorodeoxyglucose-positron emission tomography brain imaging twice ~3.6 years apart. In addition, [123 I]MIBG and [123 I]N-ω-fluoropropyl-2ß-carbomethoxy-3ß-(4-iodophenyl)nortropane single-photon emission computed tomography ([123 I]FP-CIT-SPECT) at baseline were performed. Olfactory, cognitive, and motor functions were tested annually. RESULTS: Twelve of 17 subjects had pathological [123 I]MIBG. At baseline, 6 of 12 of these expressed the PDRP (suprathreshold PDRP z score). At follow-up, 12 of 17 subjects had suprathreshold PDRP z scores, associated with pathological [123 I]MIBG in 92% and with pathological [123 I]FP-CIT-SPECT in 75%. Subjects with pathological [123 I]MIBG had higher PDRP z score change per year (P = 0.027). Three subjects phenoconverted to PD; all had pathological [123 I]MIBG and [123 I]FP-CIT-SPECT, suprathreshold baseline PDRP z scores, and hyposmia. CONCLUSIONS: Pathological [123 I]MIBG was associated with progressive and suprathreshold PDRP z scores at follow-up. Abnormal [123 I]MIBG likely identifies iRBD as prodromal PD earlier than pathological [123 I]FP-CIT-SPECT. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , 3-Iodobenzilguanidina , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Transtorno do Comportamento do Sono REM/complicações , Tomografia Computadorizada de Emissão de Fóton Único/métodosRESUMO
BACKGROUND: Isolated rapid eye movement sleep behavior disorder is known to be prodromal for alpha-synucleinopathies, such as Parkinson's disease (PD) and dementia with Lewy bodies. The [18 F]fluorodeoxyglucose-positron emission tomography (PET)-based PD-related brain pattern can be used to monitor disease progression. OBJECTIVE: We longitudinally investigated PD-related brain pattern expression changes in 20 subjects with isolated rapid eye movement sleep behavior disorder to investigate whether this may be a suitable technique to study prodromal PD progression in these patients and to identify potential phenoconverters. METHODS: Subjects underwent two [18 F]fluorodeoxyglucose-PET brain scans ~3.7 years apart, along with baseline and repeated motor, cognitive, and olfactory testing within roughly the same time frame. RESULTS: At baseline, 8 of 20 (40%) subjects significantly expressed the PD-related brain pattern (with z scores above the receiver operating characteristic-determined threshold). At follow-up, six additional subjects exhibited significant PD-related brain pattern expression (70% in total). PD-related brain pattern expression increased in all subjects (P = 0.00008). Four subjects (20%), all with significant baseline PD-related brain pattern expression, phenoconverted to clinical PD. CONCLUSIONS: Suprathreshold PD-related brain pattern expression and greater score rate of change may signify greater shorter-term risk for phenoconversion. Our results support the use of serial PD-related brain pattern expression measurements as a prodromal PD progression biomarker in patients with isolated rapid eye movement sleep behavior disorder. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Seguimentos , Humanos , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Sintomas Prodrômicos , Transtorno do Comportamento do Sono REM/diagnóstico por imagemRESUMO
BACKGROUND AND OBJECTIVE: Neurodegenerative diseases like Parkinson's disease often take several years before they can be diagnosed reliably based on clinical grounds. Imaging techniques such as MRI are used to detect anatomical (structural) pathological changes. However, these kinds of changes are usually seen only late in the development. The measurement of functional brain activity by means of [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) can provide useful information, but its interpretation is more difficult. The scaled sub-profile model principal component analysis (SSM/PCA) was shown to provide more useful information than other statistical techniques. Our objective is to improve the performance further by combining SSM/PCA and prototype-based generalized matrix learning vector quantization (GMLVQ). METHODS: We apply a combination of SSM/PCA and GMLVQ as a classifier. In order to demonstrate the combination's validity, we analyze FDG-PET data of Parkinson's disease (PD) patients collected at three different neuroimaging centers in Europe. We determine the diagnostic performance by performing a ten times repeated ten fold cross validation. Additionally, discriminant visualizations of the data are included. The prototypes and relevance of GMLVQ are transformed back to the original voxel space by exploiting the linearity of SSM/PCA. The resulting prototypes and relevance profiles have then been assessed by three neurologists. RESULTS: One important finding is that discriminative visualization can help to identify disease-related properties as well as differences which are due to center-specific factors. Secondly, the neurologist assessed the interpretability of the method and confirmed that prototypes are similar to known activity profiles of PD patients. CONCLUSION: We have shown that the presented combination of SSM/PCA and GMLVQ can provide useful means to assess and better understand characteristic differences in FDG-PET data from PD patients and HCs. Based on the assessments by medical experts and the results of our computational analysis we conclude that the first steps towards a diagnostic support system have been taken successfully.
Assuntos
Neuroimagem , Doença de Parkinson , Europa (Continente) , Fluordesoxiglucose F18 , Humanos , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Análise de Componente PrincipalRESUMO
It remains unclear whether the supportive imaging features described in the diagnostic criteria for progressive supranuclear palsy (PSP) are suitable for the full clinical spectrum. The aim of the current study was to define and cross-validate the pattern of glucose metabolism in the brain associated with a diagnosis of different PSP variants. A retrospective multicenter cohort study performed on 73 PSP patients who were referred for a fluorodeoxyglucose positron emission tomography PET scan: PSP-Richardson's syndrome, n = 47; PSP-parkinsonian variant, n = 18; and progressive gait freezing, n = 8. In addition, we included 55 healthy controls and 58 Parkinson's disease (PD) patients. Scans were normalized by global mean activity. We analyzed the regional differences in metabolism between the groups. Moreover, we applied a multivariate analysis to obtain a PSP-related pattern that was cross-validated in independent populations at the individual level. Group analysis showed relative hypometabolism in the midbrain, basal ganglia, thalamus, and frontoinsular cortices and hypermetabolism in the cerebellum and sensorimotor cortices in PSP patients compared with healthy controls and PD patients, the latter with more severe involvement in the basal ganglia and occipital cortices. The PSP-related pattern obtained confirmed the regions described above. At the individual level, the PSP-related pattern showed optimal diagnostic accuracy to distinguish between PSP and healthy controls (sensitivity, 80.4%; specificity, 96.9%) and between PSP and PD (sensitivity, 80.4%; specificity, 90.7%). Moreover, PSP-Richardson's syndrome and PSP-parkinsonian variant patients showed significantly more PSP-related pattern expression than PD patients and healthy controls. The glucose metabolism assessed by fluorodeoxyglucose PET is a useful and reproducible supportive diagnostic tool for PSP-Richardson's syndrome and PSP-parkinsonian variant. © 2020 International Parkinson and Movement Disorder Society.
Assuntos
Transtornos dos Movimentos , Paralisia Supranuclear Progressiva , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Humanos , Estudos Retrospectivos , Paralisia Supranuclear Progressiva/diagnóstico por imagemRESUMO
PURPOSE: Subthalamotomy using magnetic resonance-guided focused ultrasound (MRgFUS) has become a potential treatment option for the cardinal features of Parkinson's disease (PD). The purpose of this study was to evaluate the effects of MRgFUS-subthalamotomy on brain metabolism using different scale levels. METHODS: We studied resting-state glucose metabolism in eight PD patients before and after unilateral MRgFUS-subthalamotomy using hybrid [18F]FDG-PET/MR imaging. We used statistical nonparametric mapping (SnPM) to study regional metabolic changes following this treatment and also quantified whole-brain treatment-related changes in the expression of a spatial covariance-based Parkinson's disease-related metabolic brain pattern (PDRP). Modulation of regional and network activity was correlated with clinical improvement as measured by changes in Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor scores. RESULTS: After subthalamotomy, there was a significant reduction in FDG uptake in the subthalamic region, globus pallidus internus, motor and premotor cortical regions, and cingulate gyrus in the treated hemisphere, and the contralateral cerebellum (p < 0.001). Diffuse metabolic increase was found in the posterior parietal and occipital areas. Treatment also resulted in a significant decline in PDRP expression (p < 0.05), which correlated with clinical improvement in UPDRS motor scores (rho = 0.760; p = 0.002). CONCLUSIONS: MRgFUS-subthalamotomy induced metabolic alterations in distributed nodes of the motor, associative, and limbic circuits. Clinical improvement was associated with reduction in the PDRP expression. This treatment-induced modulation of the metabolic network is likely to mediate the clinical benefit achieved following MRgFUS-subthalamotomy.
Assuntos
Doença de Parkinson , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapiaRESUMO
INTRODUCTION: The implementation of spatial-covariance [18F]fluorodeoxyglucose positron emission tomography-based disease-related metabolic brain patterns as biomarkers has been hampered by intercenter imaging differences. Within the scope of the JPND-PETMETPAT working group, we illustrate the impact of these differences on Parkinson's disease-related pattern (PDRP) expression scores. METHODS: Five healthy controls, 5 patients with idiopathic rapid eye movement sleep behavior disorder, and 5 patients with Parkinson's disease were scanned on one positron emission tomography/computed tomography system with multiple image reconstructions. In addition, one Hoffman 3D Brain Phantom was scanned on several positron emission tomography/computed tomography systems using various reconstructions. Effects of image contrast on PDRP scores were also examined. RESULTS: Human and phantom raw PDRP scores were systematically influenced by scanner and reconstruction effects. PDRP scores correlated inversely to image contrast. A Gaussian spatial filter reduced contrast while decreasing intercenter score differences. DISCUSSION: Image contrast should be considered in harmonization efforts. A Gaussian filter may reduce noise and intercenter effects without sacrificing sensitivity. Phantom measurements will be important for correcting PDRP score offsets.
RESUMO
Neuroimaging in Parkinson's disease (PD) and other primary Parkinsonian disorders has been increasingly used in the routine clinical work in the last years. The paradigm has changed from an "exclusionary" use, i.e., to rule out causes of secondary Parkinsonism, to an "inclusionary" one, i.e., finding image and network characteristics allowing to identify a specific disease. This is allowed by analyses spanning from the commonly used visual analysis to the most sophisticated postprocessing leading to the identification of covariance patterns both in morphological and functional neuroimaging. However, paralleling the advancement in covariance and connectivity analyses, the issues of standardization and harmonization of data acquisition, and image reconstruction and postprocessing among centers are emerging in the scientific community. Also, the building of scientific evidence still suffers from the lack of large, formal studies and relies on relatively small cohort studies from one or few centers. Joint actions to face these issues are now ongoing in Europe, supported by specific programs, such as the Joint Programming on Neurodegenerative Diseases (JPND). In the present review, some of the most recent and relevant achievements in the field of diffusion tensor magnetic resonance imaging (MRI), functional MRI, fludeoxyglucose-positron-emission tomography, dopamine transporter single-photon emission computed tomography and non-dopaminergic imaging in PD and primary Parkinsonisms are reported.