Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
iScience ; 21: 664-680, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31733513

RESUMO

Here we describe a proteomic data resource for the NCI-60 cell lines generated by pressure cycling technology and SWATH mass spectrometry. We developed the DIA-expert software to curate and visualize the SWATH data, leading to reproducible detection of over 3,100 SwissProt proteotypic proteins and systematic quantification of pathway activities. Stoichiometric relationships of interacting proteins for DNA replication, repair, the chromatin remodeling NuRD complex, ß-catenin, RNA metabolism, and prefoldins are more evident than that at the mRNA level. The data are available in CellMiner (discover.nci.nih.gov/cellminercdb and discover.nci.nih.gov/cellminer), allowing casual users to test hypotheses and perform integrative, cross-database analyses of multi-omic drug response correlations for over 20,000 drugs. We demonstrate the value of proteome data in predicting drug response for over 240 clinically relevant chemotherapeutic and targeted therapies. In summary, we present a novel proteome resource for the NCI-60, together with relevant software tools, and demonstrate the benefit of proteome analyses.

2.
Sci Rep ; 9(1): 7703, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118426

RESUMO

Identifying potential protein-ligand interactions is central to the field of drug discovery as it facilitates the identification of potential novel drug leads, contributes to advancement from hits to leads, predicts potential off-target explanations for side effects of approved drugs or candidates, as well as de-orphans phenotypic hits. For the rapid identification of protein-ligand interactions, we here present a novel chemogenomics algorithm for the prediction of protein-ligand interactions using a new machine learning approach and novel class of descriptor. The algorithm applies Bayesian Additive Regression Trees (BART) on a newly proposed proteochemical space, termed the bow-pharmacological space. The space spans three distinctive sub-spaces that cover the protein space, the ligand space, and the interaction space. Thereby, the model extends the scope of classical target prediction or chemogenomic modelling that relies on one or two of these subspaces. Our model demonstrated excellent prediction power, reaching accuracies of up to 94.5-98.4% when evaluated on four human target datasets constituting enzymes, nuclear receptors, ion channels, and G-protein-coupled receptors . BART provided a reliable probabilistic description of the likelihood of interaction between proteins and ligands, which can be used in the prioritization of assays to be performed in both discovery and vigilance phases of small molecule development.


Assuntos
Desenvolvimento de Medicamentos , Ensaios de Triagem em Larga Escala/métodos , Ligantes , Modelos Químicos , Proteínas/efeitos dos fármacos , Algoritmos , Teorema de Bayes , Sítios de Ligação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Aprendizado de Máquina , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Estatísticas não Paramétricas
3.
Cell ; 176(6): 1282-1294.e20, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849372

RESUMO

Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers.


Assuntos
Desaminases APOBEC/genética , Neoplasias/genética , Desaminases APOBEC/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , DNA/metabolismo , Análise Mutacional de DNA/métodos , Bases de Dados Genéticas , Exoma , Genoma Humano/genética , Xenoenxertos , Humanos , Mutagênese , Mutação/genética , Taxa de Mutação , Retroelementos , Sequenciamento do Exoma/métodos
4.
J Proteome Res ; 15(6): 1821-9, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27098501

RESUMO

The reproducible and efficient extraction of proteins from biopsy samples for quantitative analysis is a critical step in biomarker and translational research. Recently, we described a method consisting of pressure-cycling technology (PCT) and sequential windowed acquisition of all theoretical fragment ions-mass spectrometry (SWATH-MS) for the rapid quantification of thousands of proteins from biopsy-size tissue samples. As an improvement of the method, we have incorporated the PCT-MicroPestle into the PCT-SWATH workflow. The PCT-MicroPestle is a novel, miniaturized, disposable mechanical tissue homogenizer that fits directly into the microTube sample container. We optimized the pressure-cycling conditions for tissue lysis with the PCT-MicroPestle and benchmarked the performance of the system against the conventional PCT-MicroCap method using mouse liver, heart, brain, and human kidney tissues as test samples. The data indicate that the digestion of the PCT-MicroPestle-extracted proteins yielded 20-40% more MS-ready peptide mass from all tissues tested with a comparable reproducibility when compared to the conventional PCT method. Subsequent SWATH-MS analysis identified a higher number of biologically informative proteins from a given sample. In conclusion, we have developed a new device that can be seamlessly integrated into the PCT-SWATH workflow, leading to increased sample throughput and improved reproducibility at both the protein extraction and proteomic analysis levels when applied to the quantitative proteomic analysis of biopsy-level samples.


Assuntos
Proteômica/instrumentação , Animais , Biópsia , Camundongos , Pressão , Proteínas/isolamento & purificação , Proteômica/métodos , Reprodutibilidade dos Testes , Tecnologia , Fluxo de Trabalho
5.
NPJ Syst Biol Appl ; 2: 16017, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28725473

RESUMO

Genome-scale metabolic models represent the entirety of metabolic reactions of an organism based on the annotation of the respective genome. These models commonly allow all reactions to proceed concurrently, disregarding the fact that at no point all proteins will be present in a cell. The metabolic reaction space can be constrained to a more physiological state using experimentally obtained information on enzyme abundances. However, high-quality, genome-wide protein measurements have been challenging and typically transcript abundances have been used as a surrogate for protein measurements. With recent developments in mass spectrometry-based proteomics, exemplified by SWATH-MS, the acquisition of highly quantitative proteome-wide data at reasonable throughput has come within reach. Here we present methodology to integrate such proteome-wide data into genome-scale models. We applied this methodology to study cellular changes in Enterococcus faecalis during adaptation to low pH. Our results indicate reduced proton production in the central metabolism and decreased membrane permeability for protons due to different membrane composition. We conclude that proteomic data constrain genome-scale models to a physiological state and, in return, genome-scale models are useful tools to contextualize proteomic data.

6.
Nat Med ; 21(4): 407-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25730263

RESUMO

Clinical specimens are each inherently unique, limited and nonrenewable. Small samples such as tissue biopsies are often completely consumed after a limited number of analyses. Here we present a method that enables fast and reproducible conversion of a small amount of tissue (approximating the quantity obtained by a biopsy) into a single, permanent digital file representing the mass spectrometry (MS)-measurable proteome of the sample. The method combines pressure cycling technology (PCT) and sequential window acquisition of all theoretical fragment ion spectra (SWATH)-MS. The resulting proteome maps can be analyzed, re-analyzed, compared and mined in silico to detect and quantify specific proteins across multiple samples. We used this method to process and convert 18 biopsy samples from nine patients with renal cell carcinoma into SWATH-MS fragment ion maps. From these proteome maps we detected and quantified more than 2,000 proteins with a high degree of reproducibility across all samples. The measured proteins clearly distinguished tumorous kidney tissues from healthy tissues and differentiated distinct histomorphological kidney cancer subtypes.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Biópsia , Carcinoma de Células Renais/metabolismo , Humanos , Íons , Rim/metabolismo , Neoplasias Renais/metabolismo , Peptídeos/química , Pressão , Proteoma , Reprodutibilidade dos Testes
7.
Sci Data ; 1: 140031, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25977788

RESUMO

Mass spectrometry is the method of choice for deep and reliable exploration of the (human) proteome. Targeted mass spectrometry reliably detects and quantifies pre-determined sets of proteins in a complex biological matrix and is used in studies that rely on the quantitatively accurate and reproducible measurement of proteins across multiple samples. It requires the one-time, a priori generation of a specific measurement assay for each targeted protein. SWATH-MS is a mass spectrometric method that combines data-independent acquisition (DIA) and targeted data analysis and vastly extends the throughput of proteins that can be targeted in a sample compared to selected reaction monitoring (SRM). Here we present a compendium of highly specific assays covering more than 10,000 human proteins and enabling their targeted analysis in SWATH-MS datasets acquired from research or clinical specimens. This resource supports the confident detection and quantification of 50.9% of all human proteins annotated by UniProtKB/Swiss-Prot and is therefore expected to find wide application in basic and clinical research. Data are available via ProteomeXchange (PXD000953-954) and SWATHAtlas (SAL00016-35).


Assuntos
Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Proteínas/química , Proteoma , Humanos , Proteoma/química , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA