Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39440617

RESUMO

OBJECTIVE: Lennox-Gastaut syndrome (LGS) is a severe, childhood-onset epilepsy that is typically refractory to treatment. We surveyed the current landscape of LGS treatment, aiming to identify challenges to the development of efficacious therapies, and to articulate corresponding priorities toward clinical trials that improve outcomes. METHODS: The LGS Special Interest Group of the Pediatric Epilepsy Research Consortium integrated evidence from the literature and expert opinion, into a narrative review. RESULTS: We provide an overview of approved and emerging medical, dietary, surgical and neuromodulation approaches for LGS. We note that quality of care could be improved by standardizing LGS treatment based on expert consensus and empirical data. Whereas LGS natural history is incompletely understood, prospective studies and use of large retrospective datasets to understand LGS across the lifespan would enable clinical trials that address these dynamics. Recent discoveries related to LGS pathophysiology should enable development of disease-modifying therapies, which are currently lacking. Finally, clinical trials have focused chiefly on seizures involving "drops," but should incorporate additional patient-centered outcomes, using emerging measures adapted to people with LGS. INTERPRETATION: Clinicians and researchers should enact these priorities, with the goal of patient-centered clinical trials that are tailored to LGS pathophysiology and natural history.

2.
JAMA Neurol ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39432277

RESUMO

This cohort study examined the yield and use of genome sequencing after nondiagnostic exome sequencing for pediatric patients with unexplained epilepsy between August 2018 and May 2023.

3.
medRxiv ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39148850

RESUMO

Importance: Epilepsy is the most common neurological disorder of childhood. Identifying genetic diagnoses underlying epilepsy is critical to developing effective therapies and improving outcomes. Most children with non-acquired (unexplained) epilepsy remain genetically unsolved, and the utility of genome sequencing after nondiagnostic exome sequencing is unknown. Objective: To determine the diagnostic (primary) and clinical (secondary) utility of genome sequencing after nondiagnostic exome sequencing in individuals with unexplained pediatric epilepsy. Design: This cohort study performed genome sequencing and comprehensive analyses for 125 participants and available biological parents enrolled from August 2018 to May 2023, with data analysis through April 2024 and clinical return of diagnostic and likely diagnostic genetic findings. Clinical utility was evaluated. Setting: Pediatric referral center. Participants: Participants with unexplained pediatric epilepsy and previous nondiagnostic exome sequencing; biological parents when available. Exposures: Short-read genome sequencing and analysis. Main Outcomes and Measures: Primary outcome measures were the diagnostic yield of genome sequencing, defined as the percentage of participants receiving a diagnostic or likely diagnostic genetic finding, and the unique diagnostic yield of genome sequencing, defined as the percentage of participants receiving a diagnostic or likely diagnostic genetic finding that required genome sequencing. The secondary outcome measure was clinical utility of genome sequencing, defined as impact on evaluation, treatment, or prognosis for the participant or their family. Results: 125 participants (58 [46%] female) were enrolled with median age at seizure onset 3 [IQR 1.25, 8] years, including 44 (35%) with developmental and epileptic encephalopathies. The diagnostic yield of genome sequencing was 7.2% (9/125), with diagnostic genetic findings in five cases and likely diagnostic genetic findings in four cases. Among the solved cases, 7/9 (78%) required genome sequencing for variant detection (small copy number variant, three noncoding variants, and three difficult to sequence small coding variants), for a unique diagnostic yield of genome sequencing of 5.6% (7/125). Clinical utility was documented for 4/9 solved cases (44%). Conclusions and Relevance: These findings suggest that genome sequencing can have diagnostic and clinical utility after nondiagnostic exome sequencing and should be considered for patients with unexplained pediatric epilepsy.

4.
iScience ; 27(7): 110172, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39021799

RESUMO

Hundreds of novel candidate human epilepsy-associated genes have been identified thanks to advancements in next-generation sequencing and large genome-wide association studies, but establishing genetic etiology requires functional validation. We generated a list of >2,200 candidate epilepsy-associated genes, of which 48 were developed into stable loss-of-function (LOF) zebrafish models. Of those 48, evidence of seizure-like behavior was present in 5 (arfgef1, kcnd2, kcnv1, ubr5, and wnt8b). Further characterization provided evidence for epileptiform activity via electrophysiology in kcnd2 and wnt8b mutants. Additionally, arfgef1 and wnt8b mutants showed a decrease in the number of inhibitory interneurons in the optic tectum of larval animals. Further, RNA sequencing (RNA-seq) revealed convergent transcriptional abnormalities between mutant lines, consistent with their developmental defects and hyperexcitable phenotypes. These zebrafish models provide strongest experimental evidence supporting the role of ARFGEF1, KCND2, and WNT8B in human epilepsy and further demonstrate the utility of this model system for evaluating candidate human epilepsy genes.

5.
Am J Hum Genet ; 111(8): 1588-1604, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39047730

RESUMO

Histone deacetylase 3 (HDAC3) is a crucial epigenetic modulator essential for various developmental and physiological functions. Although its dysfunction is increasingly recognized in abnormal phenotypes, to our knowledge, there have been no established reports of human diseases directly linked to HDAC3 dysfunction. Using trio exome sequencing and extensive phenotypic analysis, we correlated heterozygous de novo variants in HDAC3 with a neurodevelopmental disorder having variable clinical presentations, frequently associated with intellectual disability, developmental delay, epilepsy, and musculoskeletal abnormalities. In a cohort of six individuals, we identified missense variants in HDAC3 (c.277G>A [p.Asp93Asn], c.328G>A [p.Ala110Thr], c.601C>T [p.Pro201Ser], c. 797T>C [p.Leu266Ser], c.799G>A [p.Gly267Ser], and c.1075C>T [p.Arg359Cys]), all located in evolutionarily conserved sites and confirmed as de novo. Experimental studies identified defective deacetylation activity in the p.Asp93Asn, p.Pro201Ser, p.Leu266Ser, and p.Gly267Ser variants, positioned near the enzymatic pocket. In addition, proteomic analysis employing co-immunoprecipitation revealed that the disrupted interactions with molecules involved in the CoREST and NCoR complexes, particularly in the p.Ala110Thr variant, consist of a central pathogenic mechanism. Moreover, immunofluorescence analysis showed diminished nuclear to cytoplasmic fluorescence ratio in the p.Ala110Thr, p.Gly267Ser, and p.Arg359Cys variants, indicating impaired nuclear localization. Taken together, our study highlights that de novo missense variants in HDAC3 are associated with a broad spectrum of neurodevelopmental disorders, which emphasizes the complex role of HDAC3 in histone deacetylase activity, multi-protein complex interactions, and nuclear localization for proper physiological functions. These insights open new avenues for understanding the molecular mechanisms of HDAC3-related disorders and may inform future therapeutic strategies.


Assuntos
Epigênese Genética , Histona Desacetilases , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Humanos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Masculino , Feminino , Pré-Escolar , Criança , Deficiência Intelectual/genética , Sequenciamento do Exoma , Adolescente , Deficiências do Desenvolvimento/genética , Fenótipo , Lactente , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo
6.
Pediatr Neurol ; 157: 79-86, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901369

RESUMO

BACKGROUND: Although there are established connections between genetic epilepsies and neurodevelopmental disorders like intellectual disability, the presence of cerebral palsy (CP) in genetic epilepsies is undercharacterized. We performed a retrospective chart review evaluating the motor phenotype of patients with genetic epilepsies. METHODS: Patients were ascertained through a research exome sequencing study to identify genetic causes of epilepsy. We analyzed data from the first 100 individuals with molecular diagnoses. We determined motor phenotype by reviewing medical records for muscle tone and motor function data. We characterized patients according to CP subtypes: spastic diplegic, spastic quadriplegic, spastic hemiplegic, dyskinetic, hypotonic-ataxic. RESULTS: Of 100 individuals with genetic epilepsies, 14% had evidence of possible CP, including 5% characterized as hypotonic-ataxic CP, 5% spastic quadriplegic CP, 3% spastic diplegic CP, and 1% hemiplegic CP. Presence of CP did not correlate with seizure onset age (P = 0.63) or seizure control (P = 0.07). CP occurred in 11% (n = 3 of 27) with focal epilepsy, 9% (n = 5 of 54) with generalized epilepsy, and 32% (n = 6 of 19) with combined focal/generalized epilepsy (P = 0.06). CONCLUSIONS: In this retrospective analysis of patients with genetic epilepsies, we identified a substantial portion with CP phenotypes, representing an under-recognized comorbidity. These findings underscore the many neurodevelopmental features associated with neurogenetic conditions, regardless of the feature for which they were ascertained for sequencing. Detailed motor phenotyping is needed to determine the prevalence of CP and its subtypes among genetic epilepsies. These motor phenotypes require clinical management and represent important targeted outcomes in trials for patients with genetic epilepsies.


Assuntos
Paralisia Cerebral , Epilepsia , Fenótipo , Humanos , Masculino , Feminino , Criança , Estudos Retrospectivos , Pré-Escolar , Adolescente , Epilepsia/genética , Epilepsia/fisiopatologia , Paralisia Cerebral/genética , Paralisia Cerebral/fisiopatologia , Adulto , Adulto Jovem , Lactente
7.
Brain ; 147(9): 2983-2990, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916065

RESUMO

Somatic mosaicism in a fraction of brain cells causes neurodevelopmental disorders, including childhood intractable epilepsy. However, the threshold for somatic mosaicism leading to brain dysfunction is unknown. In this study, we induced various mosaic burdens in focal cortical dysplasia type II (FCD II) mice, featuring mTOR somatic mosaicism and spontaneous behavioural seizures. The mosaic burdens ranged from approximately 1000 to 40 000 neurons expressing the mTOR mutant in the somatosensory or medial prefrontal cortex. Surprisingly, approximately 8000-9000 neurons expressing the MTOR mutant, extrapolated to constitute 0.08%-0.09% of total cells or roughly 0.04% of variant allele frequency in the mouse hemicortex, were sufficient to trigger epileptic seizures. The mutational burden was correlated with seizure frequency and onset, with a higher tendency for electrographic inter-ictal spikes and beta- and gamma-frequency oscillations in FCD II mice exceeding the threshold. Moreover, mutation-negative FCD II patients in deep sequencing of their bulky brain tissues revealed somatic mosaicism of the mTOR pathway genes as low as 0.07% in resected brain tissues through ultra-deep targeted sequencing (up to 20 million reads). Thus, our study suggests that extremely low levels of somatic mosaicism can contribute to brain dysfunction.


Assuntos
Epilepsias Parciais , Mosaicismo , Serina-Treonina Quinases TOR , Animais , Camundongos , Humanos , Epilepsias Parciais/genética , Epilepsias Parciais/fisiopatologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Masculino , Feminino , Malformações do Desenvolvimento Cortical do Grupo II/genética , Malformações do Desenvolvimento Cortical do Grupo II/fisiopatologia , Encéfalo/fisiopatologia , Encéfalo/metabolismo , Mutação , Criança , Neurônios/metabolismo , Camundongos Transgênicos , Eletroencefalografia , Modelos Animais de Doenças , Epilepsia , Malformações do Desenvolvimento Cortical do Grupo I
8.
Ann Clin Transl Neurol ; 11(6): 1643-1647, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711225

RESUMO

Children with developmental and epileptic encephalopathies often present with co-occurring dyskinesias. Pathogenic variants in ARX cause a pleomorphic syndrome that includes infantile epilepsy with a variety of movement disorders ranging from focal hand dystonia to generalized dystonia with frequent status dystonicus. In this report, we present three patients with severe movement disorders as part of ARX-associated epilepsy-dyskinesia syndrome, including a patient with a novel pathogenic missense variant (p.R371G). These cases illustrate diagnostic and management challenges of ARX-related disorder and shed light on broader challenges concerning epilepsy-dyskinesia syndromes.


Assuntos
Proteínas de Homeodomínio , Transtornos dos Movimentos , Fatores de Transcrição , Humanos , Masculino , Feminino , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/etiologia , Pré-Escolar , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Lactente , Mutação de Sentido Incorreto , Criança
11.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370728

RESUMO

Hundreds of novel candidate human epilepsy-associated genes have been identified thanks to advancements in next-generation sequencing and large genome-wide association studies, but establishing genetic etiology requires functional validation. We generated a list of >2200 candidate epilepsy-associated genes, of which 81 were determined suitable for the generation of loss-of-function zebrafish models via CRISPR/Cas9 gene editing. Of those 81 crispants, 48 were successfully established as stable mutant lines and assessed for seizure-like swim patterns in a primary F2 screen. Evidence of seizure-like behavior was present in 5 (arfgef1, kcnd2, kcnv1, ubr5, wnt8b) of the 48 mutant lines assessed. Further characterization of those 5 lines provided evidence for epileptiform activity via electrophysiology in kcnd2 and wnt8b mutants. Additionally, arfgef1 and wnt8b mutants showed a decrease in the number of inhibitory interneurons in the optic tectum of larval animals. Furthermore, RNAseq revealed convergent transcriptional abnormalities between mutant lines, consistent with their developmental defects and hyperexcitable phenotypes. These zebrafish models provide strongest experimental evidence supporting the role of ARFGEF1, KCND2, and WNT8B in human epilepsy and further demonstrate the utility of this model system for evaluating candidate human epilepsy genes.

12.
Am J Hum Genet ; 111(1): 96-118, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181735

RESUMO

PPFIA3 encodes the protein-tyrosine phosphatase, receptor-type, F-polypeptide-interacting-protein-alpha-3 (PPFIA3), which is a member of the LAR-protein-tyrosine phosphatase-interacting-protein (liprin) family involved in synapse formation and function, synaptic vesicle transport, and presynaptic active zone assembly. The protein structure and function are evolutionarily well conserved, but human diseases related to PPFIA3 dysfunction are not yet reported in OMIM. Here, we report 20 individuals with rare PPFIA3 variants (19 heterozygous and 1 compound heterozygous) presenting with developmental delay, intellectual disability, hypotonia, dysmorphisms, microcephaly or macrocephaly, autistic features, and epilepsy with reduced penetrance. Seventeen unique PPFIA3 variants were detected in 18 families. To determine the pathogenicity of PPFIA3 variants in vivo, we generated transgenic fruit flies producing either human wild-type (WT) PPFIA3 or five missense variants using GAL4-UAS targeted gene expression systems. In the fly overexpression assays, we found that the PPFIA3 variants in the region encoding the N-terminal coiled-coil domain exhibited stronger phenotypes compared to those affecting the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin-α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 function is partially conserved in the fly. However, two of the tested variants failed to rescue the lethality at the larval stage and one variant failed to rescue lethality at the adult stage. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant-negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.


Assuntos
Proteínas de Drosophila , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Animais , Humanos , Alelos , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular , Transtornos do Neurodesenvolvimento/genética , Proteínas Tirosina Fosfatases
13.
JAMA Netw Open ; 6(7): e2324380, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37471090

RESUMO

Importance: Genomic advances inform our understanding of epilepsy and can be translated to patients as precision diagnoses that influence clinical treatment, prognosis, and counseling. Objective: To delineate the genetic landscape of pediatric epilepsy and clinical utility of genetic diagnoses for patients with epilepsy. Design, Setting, and Participants: This cohort study used phenotypic data from medical records and treating clinicians at a pediatric hospital to identify patients with unexplained pediatric-onset epilepsy. Exome sequencing was performed for 522 patients and available biological parents, and sequencing data were analyzed for single nucleotide variants (SNVs) and copy number variants (CNVs). Variant pathogenicity was assessed, patients were provided with their diagnostic results, and clinical utility was evaluated. Patients were enrolled from August 2018 to October 2021, and data were analyzed through December 2022. Exposures: Phenotypic features associated with diagnostic genetic results. Main Outcomes and Measures: Main outcomes included diagnostic yield and clinical utility. Diagnostic findings included variants curated as pathogenic, likely pathogenic (PLP), or diagnostic variants of uncertain significance (VUS) with clinical features consistent with the involved gene's associated phenotype. The proportion of the cohort with diagnostic findings, the genes involved, and their clinical utility, defined as impact on clinical treatment, prognosis, or surveillance, are reported. Results: A total of 522 children (269 [51.5%] male; mean [SD] age at seizure onset, 1.2 [1.4] years) were enrolled, including 142 children (27%) with developmental epileptic encephalopathy and 263 children (50.4%) with intellectual disability. Of these, 100 participants (19.2%) had identifiable genetic explanations for their seizures: 89 participants had SNVs (87 germline, 2 somatic mosaic) involving 69 genes, and 11 participants had CNVs. The likelihood of identifying a genetic diagnosis was highest in patients with intellectual disability (adjusted odds ratio [aOR], 2.44; 95% CI, 1.40-4.26), early onset seizures (aOR, 0.93; 95% CI, 0.88-0.98), and motor impairment (aOR, 2.19; 95% CI 1.34-3.58). Among 43 patients with apparently de novo variants, 2 were subsequently determined to have asymptomatic parents harboring mosaic variants. Of 71 patients who received diagnostic results and were followed clinically, 29 (41%) had documented clinical utility resulting from their genetic diagnoses. Conclusions and Relevance: These findings suggest that pediatric-onset epilepsy is genetically heterogeneous and that some patients with previously unexplained pediatric-onset epilepsy had genetic diagnoses with direct clinical implications.


Assuntos
Epilepsia , Deficiência Intelectual , Masculino , Feminino , Humanos , Estudos de Coortes , Sequenciamento do Exoma , Deficiência Intelectual/epidemiologia , Epilepsia/diagnóstico , Epilepsia/genética , Convulsões
14.
J Med Genet ; 60(11): 1076-1083, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37248033

RESUMO

BACKGROUND: Variants in the dynamin-1 (DNM1) gene typically cause synaptopathy, leading to developmental and epileptic encephalopathy (DEE). We aimed to determine the genotypic and phenotypic spectrum of DNM1 encephalopathy beyond DEE. METHODS: Electroclinical phenotyping and genotyping of patients with a DNM1 variant were conducted for patients undergoing next-generation sequencing at our centre, followed by a systematic review. RESULTS: Six patients with heterozygous DNM1 variants were identified in our cohort. Three had a typical DEE phenotype characterised by epileptic spasms, tonic seizures and severe-to-profound intellectual disability with pathogenic variants located in the GTPase or middle domain. The other three patients had atypical phenotypes of milder cognitive impairment and focal epilepsy. Genotypically, two patients with atypical phenotypes had variants located in the GTPase domain, while the third patient had a novel variant (p.M648R) in the linker region between pleckstrin homology and GTPase effector domains. The third patient with an atypical phenotype showed normal development until he developed febrile status epilepticus. Our systematic review on 55 reported cases revealed that those with GTPase or middle domain variants had more severe intellectual disability (p<0.001) and lower functional levels of ambulation (p=0.001) or speech and language (p<0.001) than the rest. CONCLUSION: DNM1-related phenotypes encompass a wide spectrum of epilepsy and neurodevelopmental disorders, with specific variants underlying different phenotypes.

15.
Adv Genet (Hoboken) ; 4(1): 2200012, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36910592

RESUMO

In sudden unexplained death in pediatrics (SUDP) the cause of death is unknown despite an autopsy and investigation. The role of copy number variations (CNVs) in SUDP has not been well-studied. Chromosomal microarray (CMA) data are generated for 116 SUDP cases with age at death between 1 and 28 months. CNVs are classified using the American College of Medical Genetics and Genomics guidelines and CNVs in our cohort are compared to an autism spectrum disorder (ASD) cohort, and to a control cohort. Pathogenic CNVs are identified in 5 of 116 cases (4.3%). Variants of uncertain significance (VUS) favoring pathogenic CNVs are identified in 9 cases (7.8%). Several CNVs are associated with neurodevelopmental phenotypes including seizures, ASD, developmental delay, and schizophrenia. The structural variant 47,XXY is identified in two cases (2/69 boys, 2.9%) not previously diagnosed with Klinefelter syndrome. Pathogenicity scores for deletions are significantly elevated in the SUDP cohort versus controls (p = 0.007) and are not significantly different from the ASD cohort. The finding of pathogenic or VUS favoring pathogenic CNVs, or structural variants, in 12.1% of cases, combined with the observation of higher pathogenicity scores for deletions in SUDP versus controls, suggests that CMA should be included in the genetic evaluation of SUDP.

16.
J Pathol ; 258(3): 264-277, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36098211

RESUMO

Thyroid cancer is associated with genetic alterations, e.g. BRAFV600E , which may cause carcinomatous changes in hormone-secreting epithelial cells. Epidemiological studies have shown that overnutrition is related to the development and progression of cancer. In this study, we attempted to identify the cell nonautonomous factor responsible for the progression of BRAFV600E thyroid cancer under overnutrition conditions. We developed a mouse model for inducible thyrocyte-specific activation of BRAFV600E , which showed features similar to those of human papillary thyroid cancer. LSL-BrafV600E ;TgCreERT2 showed thyroid tumour development in the entire thyroid, and the tumour showed more abnormal cellular features with mitochondrial abnormalities in mice fed a high-fat diet (HFD). Transcriptomics revealed that adrenomedullin2 (Adm2) was increased in LSL-BrafV600E ;TgCreERT2 mice fed HFD. ADM2 was upregulated on the addition of a mitochondrial complex I inhibitor or palmitic acid with integrated stress response (ISR) in cancer cells. ADM2 stimulated protein kinase A and extracellular signal-regulated kinase in vitro. The knockdown of ADM2 suppressed the proliferation and migration of thyroid cancer cells. We searched The Cancer Genome Atlas and Genotype-Tissue Expression databases and found that increased ADM2 expression was associated with ISR and poor overall survival. Consistently, upregulated ADM2 expression in tumour cells and circulating ADM2 molecules were associated with aggressive clinicopathological parameters, including body mass index, in thyroid cancer patients. Collectively, we identified that ADM2 is released from cancer cells under mitochondrial stress resulting from overnutrition and acts as a secretory factor determining the progressive properties of thyroid cancer. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Hipernutrição , Hormônios Peptídicos , Neoplasias da Glândula Tireoide , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Hormônios , Humanos , Camundongos , Mutação , Nutrientes , Ácido Palmítico , Hormônios Peptídicos/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias da Glândula Tireoide/patologia
17.
Brain ; 145(8): 2704-2720, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35441233

RESUMO

Post-zygotically acquired genetic variants, or somatic variants, that arise during cortical development have emerged as important causes of focal epilepsies, particularly those due to malformations of cortical development. Pathogenic somatic variants have been identified in many genes within the PI3K-AKT-mTOR-signalling pathway in individuals with hemimegalencephaly and focal cortical dysplasia (type II), and more recently in SLC35A2 in individuals with focal cortical dysplasia (type I) or non-dysplastic epileptic cortex. Given the expanding role of somatic variants across different brain malformations, we sought to delineate the landscape of somatic variants in a large cohort of patients who underwent epilepsy surgery with hemimegalencephaly or focal cortical dysplasia. We evaluated samples from 123 children with hemimegalencephaly (n = 16), focal cortical dysplasia type I and related phenotypes (n = 48), focal cortical dysplasia type II (n = 44), or focal cortical dysplasia type III (n = 15). We performed high-depth exome sequencing in brain tissue-derived DNA from each case and identified somatic single nucleotide, indel and large copy number variants. In 75% of individuals with hemimegalencephaly and 29% with focal cortical dysplasia type II, we identified pathogenic variants in PI3K-AKT-mTOR pathway genes. Four of 48 cases with focal cortical dysplasia type I (8%) had a likely pathogenic variant in SLC35A2. While no other gene had multiple disease-causing somatic variants across the focal cortical dysplasia type I cohort, four individuals in this group had a single pathogenic or likely pathogenic somatic variant in CASK, KRAS, NF1 and NIPBL, genes previously associated with neurodevelopmental disorders. No rare pathogenic or likely pathogenic somatic variants in any neurological disease genes like those identified in the focal cortical dysplasia type I cohort were found in 63 neurologically normal controls (P = 0.017), suggesting a role for these novel variants. We also identified a somatic loss-of-function variant in the known epilepsy gene, PCDH19, present in a small number of alleles in the dysplastic tissue from a female patient with focal cortical dysplasia IIIa with hippocampal sclerosis. In contrast to focal cortical dysplasia type II, neither focal cortical dysplasia type I nor III had somatic variants in genes that converge on a unifying biological pathway, suggesting greater genetic heterogeneity compared to type II. Importantly, we demonstrate that focal cortical dysplasia types I, II and III are associated with somatic gene variants across a broad range of genes, many associated with epilepsy in clinical syndromes caused by germline variants, as well as including some not previously associated with radiographically evident cortical brain malformations.


Assuntos
Epilepsia , Hemimegalencefalia , Malformações do Desenvolvimento Cortical , Caderinas , Proteínas de Ciclo Celular , Feminino , Humanos , Malformações do Desenvolvimento Cortical do Grupo I , Mutação , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Protocaderinas , Serina-Treonina Quinases TOR
18.
Genet Med ; 24(4): 839-850, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35027292

RESUMO

PURPOSE: This study aimed to evaluate genetic contributions to sudden unexpected death in pediatrics (SUDP). METHODS: We phenotyped and performed exome sequencing for 352 SUDP cases. We analyzed variants in 294 "SUDP genes" with mechanisms plausibly related to sudden death. In a subset of 73 cases with parental data (trios), we performed exome-wide analyses and conducted cohort-wide burden analyses. RESULTS: In total, we identified likely contributory variants in 37 of 352 probands (11%). Analysis of SUDP genes identified pathogenic/likely pathogenic variants in 12 of 352 cases (SCN1A, DEPDC5 [2], GABRG2, SCN5A [2], TTN [2], MYBPC3, PLN, TNNI3, and PDHA1) and variants of unknown significance-favor-pathogenic in 17 of 352 cases. Exome-wide analyses of the 73 cases with family data additionally identified 4 de novo pathogenic/likely pathogenic variants (SCN1A [2], ANKRD1, and BRPF1) and 4 de novo variants of unknown significance-favor-pathogenic. Comparing cases with controls, we demonstrated an excess burden of rare damaging SUDP gene variants (odds ratio, 2.94; 95% confidence interval, 2.37-4.21) and of exome-wide de novo variants in the subset of 73 with trio data (odds ratio, 3.13; 95% confidence interval, 1.91-5.16). CONCLUSION: We provide strong evidence for a role of genetic factors in SUDP, involving both candidate genes and novel genes for SUDP and expanding phenotypes of disease genes not previously associated with sudden death.


Assuntos
Morte Súbita , Pediatria , Proteínas Adaptadoras de Transdução de Sinal , Criança , Pré-Escolar , Proteínas de Ligação a DNA , Exoma/genética , Humanos , Lactente , Recém-Nascido , Fenótipo , Sequenciamento do Exoma
19.
J Nutr ; 151(10): 3045-3052, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486658

RESUMO

BACKGROUND: Soy-based infant formulas are increasingly popular, but data regarding their effects on neurodevelopmental outcomes during early childhood is scanty. OBJECTIVE: This study investigated the effect of consuming soy-based infant formula at 9-12 mo after birth on the subsequent development of epilepsy, neurodevelopmental disorders, and developmental status. METHODS: This nationwide retrospective administrative study used health screening examinations and linked insurance claims data of children born in Korea during 2008 and 2009. Infants who received soy formula were compared with those who received cow's milk formula using propensity score matching that considered birth history, economic status, clinical conditions, and drug prescription records. Exposure was defined as soy formula feeding determined from questionnaires completed by the parents when children were 9-12 mo old. Outcomes were epilepsy, attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and developmental status. Children were followed until 31 December, 2017. RESULTS: A total of 153,841 eligible participants were enrolled; 11,535 (7.5%) children received soy formula, while 142,864 (92.5%) received cow's milk formula. The incidence rate of epilepsy during the follow-up period was 29.8 per 100,000 person-years (95% CI: 19.48, 41.65) in the soy formula group and 22.6 per 100,000 person-years (95% CI: 31.97, 59.07) in the cow's milk formula group, with no significant difference (aHR: 1.318; 95% CI: 0.825, 2.106). The 2 groups also had no difference based on prespecified analysis using different definitions of epilepsy. Likewise, no significant associations of soy formula with ADHD (aHR: 1.26; 95% CI: 1.00, 1.60) or ASD (aHR: 0.99; 95% CI: 0.54, 1.83), or delays of developmental stages were observed. CONCLUSIONS: Feeding with soy formula rather than cow's milk formula had no apparent association with increased risks of epilepsy, ADHD, ASD, and developmental status, according to this cohort composed of a general pediatric population.


Assuntos
Transtorno do Espectro Autista , Hipersensibilidade a Leite , Animais , Bovinos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Fórmulas Infantis , Leite , Estudos Retrospectivos
20.
BMC Pediatr ; 21(1): 340, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384371

RESUMO

BACKGROUND: The purpose was to determine the association between infant exposure to humidifier disinfectant (HD) with neuropsychiatric problems in pre-school children. METHODS: A total of 2,150 children (age 4-11 months) were enrolled in the Panel Study of Korean Children (PSKC) study. The Korean version of the Child Behavior Checklist (CBCL) was used for assessments of neuropsychiatric problems. 1,113 children who participated in all the first to third PSKC studies and answered a question about HD exposure were finally enrolled. RESULTS: There were 717 (64.5%) children in non-HD group who were not exposed to HD and 396 (35.5%) in HD group with former exposure to HD. Exposure to HD was associated with total neuropsychiatric problems (adjusted odds ratio, aOR = 1.54, 95% CI = 1.15-2.06), being emotionally reactive (aOR = 1.55, 95% CI = 1.00-2.39), having attention problems (aOR = 1.96, 95% CI = 1.10-3.47), having oppositional defiant problems (aOR = 1.70, 95% CI = 1.07-2.71), and having attention deficit/hyperactivity problems (aOR = 11.57, 95% CI = 1.03-2.38). The risks for neuropsychiatric problems were clearly increased in boy, firstborn, and secondary smoker. CONCLUSIONS: Exposure to HD during early childhood had a potential association with subsequent behavioral abnormalities.


Assuntos
Desinfetantes , Umidificadores , Criança , Pré-Escolar , Estudos Transversais , Desinfetantes/toxicidade , Humanos , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA