Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Death Discov ; 2: 16041, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551531

RESUMO

Epithelial-mesenchymal transition (EMT), a crucial mechanism in development, mediates aggressiveness during carcinoma progression and therapeutic refractoriness. The reversibility of EMT makes it an attractive strategy in designing novel therapeutic approaches. Therefore, drug discovery pipelines for EMT reversal are in need to discover emerging classes of compounds. Here, we outline a pre-clinical drug screening platform for EMT reversal that consists of three phases of drug discovery and validation. From the Phase 1 epithelial marker promoter induction (EpI) screen on a library consisting of compounds being approved by Food and Drug Administration (FDA), Vorinostat (SAHA), a histone deacetylase inhibitor (HDACi), is identified to exert EMT reversal effects by restoring the expression of an epithelial marker, E-cadherin. An expanded screen on 41 HDACi further identifies 28 compounds, such as class I-specific HDACi Mocetinosat, Entinostat and CI994, to restore E-cadherin and ErbB3 expressions in ovarian, pancreatic and bladder carcinoma cells. Mocetinostat is the most potent HDACi to restore epithelial differentiation with the lowest concentration required for 50% induction of epithelial promoter activity (EpIC-50).The HDACi exerts paradoxical effects on EMT transcriptional factors such as SNAI and ZEB family and the effects are context-dependent in epithelial- and mesenchymal-like cells. In vitro functional studies further show that HDACi induced significant increase in anoikis and decrease in spheroid formation in ovarian and bladder carcinoma cells with mesenchymal features. This study demonstrates a robust drug screening pipeline for the discovery of compounds capable of restoring epithelial differentiation that lead to significant functional lethality.

2.
Chem Commun (Camb) ; 50(61): 8324-7, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24940819

RESUMO

An efficient synthetic route towards tosyl-protected (2S)-phenyl-3-piperidone, a common intermediate for many drugs, has been developed in 5 steps in 54% yield from biomass derived furfural. The synthetic utility of the piperidone core structure was demonstrated with the synthesis of a NK1 receptor antagonist.


Assuntos
Antagonistas dos Receptores de Neurocinina-1/síntese química , Piperidonas/síntese química , Biomassa , Cristalografia por Raios X , Furaldeído/química , Conformação Molecular , Antagonistas dos Receptores de Neurocinina-1/química , Piperidonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA