Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Sci Total Environ ; 940: 173666, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823697

RESUMO

We explored the presence of microplastics in the Finnish Arctic Sámi home area. A dialogue between Indigenous knowledge and scientific field work produced data about microplastics in remote wilderness aquatic ecosystems. Methods included geographical Indigenous knowledge analysis, water sampling with fraction filtration, and imaging Fourier transform infrared spectroscopy. The MPs found were small; the mean particle size was 126 ± 121 µm. Particle concentrations of MPs in freshwater and marine samples varied between 45 and 423 MPs m-3 and the most common polymer types were polyethylene, polypropylene, and polyethylene terephthalate. In conclusion, because microplastics are present even in the wilderness areas, their abundance should be monitored to assess plastic pollution in the relatively pristine Arctic environments. Sámi Indigenous knowledge proved to be a beneficial and important initiator, because locals recognize the possible sources and transport pathways of plastic litter, and practical sampling sites in the complex freshwater systems of the area.


Assuntos
Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Regiões Árticas , Finlândia , Poluentes Químicos da Água/análise , Água Doce/química , Plásticos/análise
2.
Sci Total Environ ; 925: 171821, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513866

RESUMO

Microplastic (MP) pollution is a persisting global problem. Accurate analysis is essential in quantifying the effects of microplastic pollution and develop novel technologies that reliably and reproducibly measure microplastic content in various samples. The most common methods for this are FTIR and Raman spectroscopy. Coloured, standardized beads are often used for method validation tests, which limits the conclusions to a very specific case rarely observed in the natural environment. This study focuses on the preparation of reference micro- and nanoplastics via cryogenic milling and shows their use for FTIR and Raman method validation studies. MPs can now be reproducibly milled from various plastics, offering the advantages of a better representation of MPs in real environment. Moreover, this study highlights issues with the current detection methods, up to now considered as the most reliable ones for MP detection and identification. Such issues, e.g. misidentification, will need to be addressed in the future. Additionally, milled MPs were used in experiments with commercial high-resolution imaging device, enabling a possible in-situ optical detection of microplastics. These experiments represent a step forward in understanding MPs in a water sample and provide a basis for a more accurate detection and identification directly from water, which would considerably reduce the time of analysis.

3.
Ultrastruct Pathol ; 48(2): 128-136, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38115187

RESUMO

Radiation exposure is a major health concern due to bone involvement including mandible, causing deleterious effects on bone metabolism, and healing with an increasing risk of infection and osteoradionecrosis. This study aims to investigate the radiotherapy-induced microstructural changes in the human mandible by scanning electron microscopy (SEM). Mandibular cortical bone biopsies were obtained from control, irradiated, and patients with osteoradionecrosis (ORN). Bone samples were prepared for light microscopy and SEM. The SEM images were analyzed for the number of osteons, number of Haversian canal (HC), diameter of osteon (D.O), the diameter of HC (D.HC), osteonal wall thickness (O.W.Th), number of osteocytes, and number of osteocytic dendrites. The number of osteons, D.O, D.HC, O.W.Th, the number of osteocytes, and osteocytic dendrites were significantly decreased in both irradiated and ORN compared to controls (p < .05). The number of HCs decreased in irradiated and ORN bone compared to the control group. However, this was statistically not significant. The deleterious effect of radiation continues gradually altering the bone quality, structure, cellularity, and vascularity in the long term (>5 years mean radiation biopsy interval). The underlying microscopic damage in bone increases its susceptibility and contributes further to radiation-induced bone changes or even ORN.


Assuntos
Osteorradionecrose , Humanos , Microscopia Eletrônica de Varredura , Osteorradionecrose/etiologia , Osteorradionecrose/patologia , Osteócitos/patologia , Ósteon , Mandíbula/patologia
4.
Sci Total Environ ; 867: 161511, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632898

RESUMO

Flying insects are potential mobile samplers of airborne particulate matter (PM). However, current knowledge on their susceptibility to PM is limited to pollinators. Insects' capacity for particle surface accumulation depends on the lifestyle, structure of the body integuments, and behavioral patterns. Here, we investigate how two species of flying omnivorous insects from the genus Vespula, possessing direct interactions with air, soil, plants, and herbivores, indicate industrial pollution by accumulating coarse (PM10) and fine (PM2.5) particles on their bodies. The internal accumulation of particles in wasps' gut tissues is assessed considering heavy metals exposure to reveal and discuss the potential magnitude of ecotoxicological risks. Female individuals of Vespula vulgaris and V. germanica were sampled with a hand-netting near to Harjavalta Cu-Ni smelter and in the control areas in southwestern Finland. They were analyzed with light microscopy (LM), electron microscopy (SEM, TEM), and energy-dispersive X-ray spectroscopy (EDX) methods. Near to the smelter, wasps trapped significantly more particles, which were of bigger size and their surface optical density was higher. Vespula vulgaris accumulated larger particles than V. germanica, but that wasn't associated with morphological characteristics such as body size or hairiness. In both areas, accumulated surface PM carried clays and silicates. Only in polluted environments PM consistently contained metallic and nonmetallic particles (from high to moderate weight %) of Fe, Ni, Cu, and S - major pollutants emitted from the smelter. Wasps from industrially polluted areas carried significantly more granules in the columnar epithelial midgut cells. TEM-EDX analyses identified those structures were associated with metal ions such as Cr, Cu, Ni, and Fe. As epithelial gut cells accumulated metal particles, midgut confirmed as a barrier for metal exposure in wasps. External PM contamination in wasps is suggested as a qualitative, yet a natural and simple descriptor of local industrial emissions.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Vespas , Humanos , Animais , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Tamanho da Partícula
5.
Eur J Pharm Biopharm ; 180: 161-169, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36122786

RESUMO

Many active pharmaceutical ingredients (API) in development suffer from low aqueous solubilities. Instead of the crystal form, the amorphous state can be used to improve the API's apparent solubility. However, the amorphous state has a higher Gibb's free energy and is inherently unstable and tends to transform back to the more stable crystal form. In co-amorphous mixtures, phase separation needs to occur before there can be crystallization. The aim of this study was to devise a method to study amorphous-amorphous phase separation with high resolution imaging Fourier transform infrared (FTIR) spectroscopy with seven 1:1 M ratio API-API binary mixtures being examined. The binary mixtures were amorphized by melt-quenching and stored above their glass transition temperature (Tg) to monitor their phase separation. Thermodynamic properties (crystallization tendency, melting point (Tm) and Tg) of these mixtures were measured with differential scanning calorimetry (DSC) to verify the amorphization method and to assess the optimal storage temperature. The phase separation was examined with FTIR imaging in the transmission mode. Furthermore, measurements with two pure APIs were performed to ensure that the alterations occurring in the spectra were caused by phase separation not storage stress. In addition, the reproducibility of the imaging FTIR spectrometer was verified. The spectra were analyzed with principal component analysis (PCA) and a characteristic peak comparison method. Scatter-plots were produced from the amount of phase separated pixels in the measurement area as a way of visualizing the progress of phase separation. The results indicated that imaging with FTIR spectroscopy can produce reproducible results and the progress of phase separation can be detected as either a sigmoidal or as a start-to-finish linear pattern depending on the substances.


Assuntos
Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Reprodutibilidade dos Testes , Varredura Diferencial de Calorimetria , Solubilidade , Temperatura de Transição , Estabilidade de Medicamentos
6.
Calcif Tissue Int ; 111(6): 547-558, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35978052

RESUMO

Osteoid is a layer of new-formed bone that is deposited on the bone border during the process of new bone formation. This deposition process is crucial for bone tissue, and flaws in it can lead to bone diseases. Certain bone diseases, i.e. medication related osteonecrosis, are overexpressed in mandibular bone. Because mandibular bone presents different properties than other bone types, the data concerning osteoid formation in other bones are inapplicable for human-mandibular bone. Previously, the molecular distribution of other bone types has been presented using Fourier-transform infrared (FTIR) spectroscopy. However, the spatial distribution of molecular components of healthy-human-mandibular-bone osteoid in relation to histologic landmarks has not been previously presented and needs to be studied in order to understand diseases that occur human-mandibular bone. This study presents for the first time the variation in molecular distribution inside healthy-human-mandibular-bone osteoid by juxtaposing FTIR data with its corresponding histologic image obtained by autofluorescence imaging of its same bone section. During new bone formation, bone-forming cells produce an osteoid constituted primarily of type I collagen. It was observed that in mandibular bone, the collagen type I increases from the osteoblast line with the distance from the osteoblasts, indicating progressive accumulation of collagen during osteoid formation. Only later inside the collagen matrix, the osteoid starts to mineralize. When the mineralization starts, the collagen accumulation diminishes whereas the collagen maturation still continues. This chemical-apposition process in healthy mandibular bone will be used in future as a reference to understand different pathologic conditions that occur in human-mandibular bone.


Assuntos
Doenças Ósseas , Osso e Ossos , Humanos , Matriz Óssea , Osteoblastos , Colágeno , Calcificação Fisiológica
7.
Appl Spectrosc ; 76(10): 1165-1173, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35684992

RESUMO

Understanding the biochemical changes in irradiated human mandible after radiotherapy of cancer patients is critical for oral rehabilitation. The underlying mechanism for radiation-associated changes in the bone at the molecular level could lead to implant failure and osteoradionecrosis. The study aimed to assess the chemical composition and bone quality in irradiated human mandibular bone using Raman spectroscopy. A total of 33 bone biopsies from 16 control and 17 irradiated patients were included to quantify different biochemical parameters from the Raman spectra. The differences in bone mineral and matrix band intensities between control and irradiated groups were analyzed using unpaired Student's t-test with statistical significance at p < 0.05. Findings suggest that the intensity of the phosphate band is significantly decreased and the carbonate band is significantly increased in the irradiated group. Further, the mineral crystallinity and carbonate to phosphate ratio are increased. The mineral to matrix ratio is decreased in the irradiated group. Principal component analysis (PCA) based on the local radiation dose and biopsy time interval of irradiated samples did not show any specific classification between irradiation sub-groups. Irradiation disrupted the interaction and bonding between the organic matrix and hydroxyapatite minerals affecting the bone biochemical properties. However, the normal clinical appearance of irradiated bone would have been accompanied by underlying biochemical and microscopical changes which might result in radiation-induced delayed complications.


Assuntos
Mandíbula , Análise Espectral Raman , Carbonatos , Durapatita/química , Humanos , Mandíbula/efeitos da radiação , Análise de Componente Principal , Análise Espectral Raman/métodos
8.
Ultrastruct Pathol ; 45(4-5): 276-285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34423726

RESUMO

Radiation therapy may compromise the quality of bone around dental implants, and its ability to regenerate, remodel, and revascularize. This study aimed to describe the irradiation effect on the bone microstructure of the mandible using dental implants in a canine model. Five beagle dogs were exposed to 40 Gy fractionated radiation. In total, 20 dental implants were inserted, two in the irradiated and two in the non-irradiated side. The mandible bone blocks were subjected to 3D micro-computed tomography (µCT) imaging, later evaluated histomorphometrically by light microscopy and scanning electron microscopy. Alterations in irradiated bone were observed under µCT imaging showing an increased anisotropy, porosity, and pore volume. Bone surface-to-bone volume decreased. The bone to implant contact index was significantly reduced in the irradiated bone (75.6% ± 5.8%) as compared to the non-irradiated bone (85.1% ± 6.8%). In the irradiated mandible, osteocytes with their filopodial processes, the bone beneath the periosteum, and subperiosteal veins showed structural differences but were not significant, whereas the diameter of Haversian canals were smaller statistical significant as compared to the control side. The study highlights that radiation dosage of fractioned 40 Gy causes alterations in the alveolar bone microstructure with compatible osseointegration and clinically stable dental implants.


Assuntos
Implantes Dentários , Animais , Cães , Mandíbula/diagnóstico por imagem , Osseointegração , Osteócitos , Microtomografia por Raio-X
9.
Acta Biomater ; 134: 252-260, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34365039

RESUMO

The lateral resolution of infrared spectroscopy has been inadequate for accurate biochemical characterization of the cell microenvironment, a region regulating biochemical and biomechanical signals to cells. In this study, we demonstrate the capacity of a high-resolution Fourier transform infrared microspectroscopy (HR-FTIR-MS) to characterize the collagen content of this region. Specifically, we focus on the collagen content in the cartilage cell (chondrocyte) microenvironment of healthy and osteoarthritic (OA) cartilage. Human tibial cartilage samples (N = 28) were harvested from 7 cadaveric donors and graded for OA severity (healthy, early OA, advanced OA). HR-FTIR-MS was used to analyze the collagen content of the chondrocyte microenvironment of five distinct zones across the tissue depth. HR-FTIR-MS successfully showed collagen content distribution across chondrocytes and their environment. In zones 2 and 3 (10 - 50% of the tissue thickness), we observed that collagen content was smaller (P < 0.05) in early OA compared to the healthy tissue in the vicinity of cells (pericellular region). The collagen content loss was extended to the extracellular matrix in advanced OA tissue. No significant differences in the collagen content of the chondrocyte microenvironment were observed between the groups in the most superficial (0-10%) and deep zones (50-100%). HR-FTIR-MS revealed collagen loss in the early OA cartilage pericellular region before detectable changes in the extracellular matrix in advanced OA. HR-FTIR-MS-based compositional assessment enables a better understanding of OA-related changes in tissues. This technique can be used to identify new disease mechanisms enabling better intervention strategies. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) is the most common degenerative joint disease causing pain and disability. While significant progress has been made in OA research, OA pathogenesis is still poorly understood and current OA treatments are mainly palliative. This study demonstrates that high-resolution FTIR microspectroscopy (HR-FTIR-MS) can characterize OA-induced compositional changes in the cell microenvironment (pericellular matrix) during the early disease stages before tissue changes in the extracellular matrix become apparent. This technique may further enable the identification of new OA mechanisms and improve our current understanding of OA pathogenesis, thus, enabling the development of better treatment methods.


Assuntos
Cartilagem Articular , Microambiente Celular , Condrócitos , Colágeno , Matriz Extracelular , Humanos
10.
Environ Pollut ; 288: 117780, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329046

RESUMO

Despite the ubiquitousness of microplastics, knowledge on the exposure of freshwater fish to microplastics is still limited. Moreover, no standard methods are available for analyzing microplastics, and the quality of methods used for the quantification of ingested microplastics in fish should be improved. In this study, we studied microplastic ingestion of common wild freshwater fish species, perch (Perca fluviatilis) and vendace (Coregonus albula). Further, our aim was to develop and validate imaging Fourier-transform infrared spectroscopic method for the quantification of ingested microplastics. For this purpose, enzymatically digested samples were measured with focal plane array (FPA) based infrared microscope. Data was analyzed with siMPle software, which provides counts, mass estimations, sizes, and materials for the measured particles. Method validation was conducted with ten procedural blanks and recovery tests, resulting in 75% and 77% recovery rates for pretreatment and infrared imaging, respectively. Pretreatment caused contamination principally by small <100 µm microplastics. The results showed that 17% of perch and 25% of vendace had ingested plastic. Most of the fish contained little or no plastics, while some individuals contained high numbers of small particles or alternatively few large particles. Perch from one sampling site out of five had ingested microplastics, but vendace from all sampling sites had ingested microplastics. The microplastics found from fish were mostly small: 81% had particle size between 20 and 100 µm, and most of them were polyethylene, polypropylene, and polyethylene terephthalate. In conclusion, the implemented method revealed low numbers of ingested microplastics on average but needs further development for routine monitoring of small microplastics.


Assuntos
Percas , Poluentes Químicos da Água , Animais , Ingestão de Alimentos , Monitoramento Ambiental , Finlândia , Humanos , Lagos , Microplásticos , Plásticos , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
11.
Dent Mater ; 37(7): 1083-1095, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33863568

RESUMO

OBJECTIVE: Imperfect polymer formation as well as collagen's susceptibility to enzymatic degradation increase the vulnerability of hybrid layers over time. This study investigated the effect of new dimethyl sulfoxide (DMSO)-containing pretreatments on long-term bond strength, hybrid layer quality, monomer conversion and collagen structure. METHODS: H3PO4-etched mid-coronal dentin surfaces from extracted human molars (n = 8) were randomly treated with aqueous and ethanolic DMSO solutions or following the ethanol-wet bonding technique. Dentin bonding was performed with a three-step etch-and-rinse adhesive. Resin-dentin beams (0.8 mm2) were stored in artificial saliva at 37 °C for 24 h and 2.5 years, submitted to microtensile bond strength testing at 0.5 mm/min and semi-quantitative SEM nanoleakage analysis (n = 8). Micro-Raman spectroscopy was used to determine the degree of conversion at different depths in the hybrid layer (n = 6). Changes in the apparent modulus of elasticity of demineralized collagen beams measuring 0.5 × 1.7 × 7 mm (n = 10) and loss of dry mass (n = 10) after 30 days were calculated via three-point bending and precision weighing, respectively. RESULTS: DMSO-containing pretreatments produced higher bond strengths, which did not change significantly over time presenting lower incidence of water-filled zones. Higher uniformity in monomer conversion across the hybrid layer occurred for all pretreatments. DMSO-induced collagen stiffening was reversible in water, but with lower peptide solubilization. SIGNIFICANCE: Improved polymer formation and higher stability of the collagen-structure can be attributed to DMSO's unique ability to simultaneously modify both biological and resin components within the hybrid layer. Pretreatments composed of DMSO/ethanol may be a viable-effective alternative to extend the longevity of resin-dentin bonds.


Assuntos
Colágeno , Colagem Dentária , Adesivos Dentinários , Cimentos de Resina , Dentina , Humanos , Técnicas In Vitro , Teste de Materiais , Polímeros , Distribuição Aleatória , Resistência à Tração
12.
Polymers (Basel) ; 13(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673495

RESUMO

The prevalent nature of micro and nanoplastics (MP/NPs) on environmental pollution and health-related issues has led to the development of various methods, usually based on Fourier-transform infrared (FTIR) and Raman spectroscopies, for their detection. Unfortunately, most of the developed techniques are laboratory-based with little focus on in situ detection of MPs. In this review, we aim to give an up-to-date report on the different optical measurement methods that have been exploited in the screening of MPs isolated from their natural environments, such as water. The progress and the potential of portable optical sensors for field studies of MPs are described, including remote sensing methods. We also propose other optical methods to be considered for the development of potential in situ integrated optical devices for continuous detection of MPs and NPs. Integrated optical solutions are especially necessary for the development of robust portable and in situ optical sensors for the quantitative detection and classification of water-based MPs.

13.
Environ Pollut ; 274: 116568, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529889

RESUMO

Sediment trapping as a tool to monitor microplastic influx was tested in an urban boreal lake basin. The one-year-long trap monitoring consisted of 5-month and 7-month periods representing growing season and winter season (including the spring flood event), respectively. Sediment accumulation rate (SAR), and organic content were determined, highest SAR - 14.5 g/m2/d - was measured during the winter period. Microplastics were extracted from the sediment applying heavy-liquid density separation method and collected under a microscope for further identification with FTIR spectroscopy. PE was identified as the most abundant synthetic polymer type, while PP and PET are also present. The annual microplastic flux rate is 32 400 pieces/m2/year, and highest accumulation does not coincide with the highest SAR, but occurs during the growing season. Changes in the microplastic accumulation rates are related to seasonal conditions. Highest microplastic concentration with respect to dry sediment weight (10 200 pieces/kg) was observed in a growing season sample, while highest concentration with respect to sediment volume (1800 pieces/l) was observed during winter. This finding underlines the problems related to reporting microplastic concentrations in various units. The results highlight that sediment trap monitoring is an efficient tool for monitoring microplastic accumulation rate in aquatic environments and provides an opportunity to better understand and define processes controlling microplastic accumulation.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Poluentes Químicos da Água/análise
14.
Environ Pollut ; 268(Pt A): 115700, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010544

RESUMO

In the Baltic Sea, water is stratified due to differences in density and salinity. The stratification prevents water from mixing, which could affect sinking rates of microplastics in the sea. We studied the accumulation of microplastics to halocline and thermocline. We sampled water with a 100 µm plankton net from vertical transects between halo- and thermocline, and a 30 L water sampler from the end of halocline and the beginning of thermocline. Thereafter, microplastics in the whole sample volumes were analyzed with imaging Fourier transform infrared spectroscopy (FTIR). The plankton net results showed that water column between halo- and thermoclines contained on average 0.92 ± 0.61 MP m-3 (237 ± 277 ng/m-3; mean ± SD), whereas the 30 L samples from the end of halocline and the beginning of thermocline contained 0.44 ± 0.52 MP L-1 (106 ± 209 ng L-1). Hence, microplastics are likely to accumulate to thin layers in the halocline and thermocline. The vast majority of the found microplastics were polyethylene, polypropylene and polyethylene terephthalate, which are common plastic types. We did not observe any trend between the density of microplastics and the sampling depth, probably because biofilm formation affected the sinking rates of the particles. Our results indicate the need to sample deeper water layers in addition to surface waters at least in the stratified water bodies to obtain a comprehensive overview of the abundance of microplastics in the aquatic environment.


Assuntos
Plásticos , Poluentes Químicos da Água , Países Bálticos , Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água/análise
15.
Eur J Pharm Biopharm ; 155: 49-54, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32795500

RESUMO

Many new active pharmaceutical ingredients (API) undergoing development have low permeabilities or low aqueous solubilities. However, the amorphous state is usually more soluble than its crystalline counterpart. The amorphous state has a higher Gibb's free energy, which can improve the apparent solubility but decrease the stability since the amorphous state tends to transform to the more stable crystalline form. Before recrystallization, a co-amorphous binary mixture's ingredients have to undergo a phase separation. The aim of this study was to obtain a better understanding of the amorphous-amorphous phase separation in co-amorphous binary mixtures and test the suitability of imaging Raman spectroscopy for detecting this phenomenon. To study the phase separation, we prepared three different 50:50 mass ratio binary mixtures of APIs: paracetamol-terfenadine, (PAR-TRF), paracetamol-indomethacin (PAR-IMC) and terfenadine-indomethacin (TRF-IMC). The binary mixtures were amorphized with melt-quenching and stored above their glass transition temperature (Tg) to monitor their phase separation. Thermal degradation was determined with a high performance liquid chromatography (HPLC) method to ensure that melt-quenching did not cause any thermal degradation of the molecules. Thermodynamic attributes (crystallization tendency, melting point (Tm) and Tg) were measured with differential scanning calorimetry (DSC) to ensure that the co-amorphous systems transformed to the amorphous state and remained amorphous after cooling and reheating. Phase separation was studied from the surface and cross-section (CS) with Raman imaging to examine if it occurred more on the surface than in the bulk. The Raman spectra were analyzed with principal component analysis (PCA) and Contour plots were produced from the PCA-score values to visualize concentration differences in the mixtures. The results showed that API vs API concentrations increased as a function of time in both surface and CS images before crystallization. This suggests that Raman imaging is a suitable technique to detect the phase separation phenomena in small molecule co-amorphous binary mixtures.


Assuntos
Química Farmacêutica/métodos , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Análise Espectral Raman/métodos
16.
Eur J Pharm Biopharm ; 150: 43-49, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32151730

RESUMO

Amorphicity is one possible way to increase the solubility of poorly water soluble drugs. However, amorphous solids are thermodynamically unstable and tend to recrystallize with material-specific kinetics. Crystallization is not the prime phenomenon in the whole process, although it is the easiest to measure. The primary phenomenon prior to the crystallization of glass is phase separation, the detection of which is very rarely reported among small molecular compounds. In the present study, a scanning electron microscope with energy dispersive X-ray spectrometer (SEM-EDS) was used to detect very early stage amorphous-amorphous phase separation in co-amorphous drug mixtures. Miscibility was calculated for five studied mixtures based on the Flory-Huggins method and four immiscible pairs and one partial miscible pair were selected for the laboratory experiments. Co-amorphous samples (n = 3) were prepared by melt-quench method and stored at the elevated temperature to induce the separation of amorphous phases. Each sample was stored at the same relative percentage temperature between glass transition temperature Tg and melting temperature Tm. Immediately after the sample preparation, the full amorphousness was verified with polarizing light microscopy. Before SEM-EDS analysis, the samples were fractured into two pieces and measurements were done from cross-section (from the bulk sample). All five pairs phase separated during two days of storage at the elevated temperature. The study proved that SEM-EDS was able to detect a very small phase separated regions in the amorphous sample, as amorphous-amorphous phase separation was detected in four out of five pairs. However, the surface roughness could affect the analysis and give a false indication of phase separation. SEM-EDS also supported calculation results, since every studied pair showed phase separation during study, as was predicted on the grounds of Flory-Huggins miscibility calculation.


Assuntos
Microscopia Eletrônica de Varredura , Preparações Farmacêuticas/química , Espectrometria por Raios X , Cristalização , Modelos Químicos , Solubilidade , Temperatura de Transição , Vitrificação
17.
Water Environ Res ; 92(1): 149-156, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31469932

RESUMO

We examined microplastic concentrations, size distributions, and polymer types in surface waters of a northern European dimictic lake. Two sampling methods, a pump sieving water onto filters with different pore sizes (20, 100, and 300 µm) and a common manta trawl (333 µm), were utilized to sample surface water from 12 sites at the vicinity of potential sources for microplastic emissions. The number and polymer types of microplastics in the samples were determined with optical microscopy and µFTIR spectroscopy. The average concentrations were 0.27 ± 0.18 (mean ± SD) microplastics/m3 in manta trawled samples and 1.8 ± 2.3 (>300 µm), 12 ± 17 (100-300 µm) and 155 ± 73 (20-100 µm) microplastics/m3 in pump filtered samples. The majority (64%) of the identified microplastics (n = 168) were fibers, and the rest were fragments. Materials were identified as polymers commonly used in consumer products, such as polyethylene, polypropylene, and polyethylene terephthalate. Microplastic concentrations were high near the discharge pipe of a wastewater treatment plant, harbors, and snow dumping site. PRACTITIONER POINTS: Samples were taken with a manta trawl (333 µm) and a pump filtration system (300/100/20 µm) With pump filtration, small 20-300 µm particles were more common than >300 µm particles The average concentration of manta trawled samples was 0.27 ± 0.18 (mean ± SD) microplastics/m3 FTIR analysis revealed PE, PP, PET, and PAN to be the most common polymers.


Assuntos
Lagos , Poluentes Químicos da Água , Monitoramento Ambiental , Microplásticos , Plásticos , Polímeros
18.
Front Mol Neurosci ; 12: 276, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803019

RESUMO

In this study, we performed a comprehensive behavioral and anatomical analysis of the Missing in Metastasis (Mtss1/MIM) knockout (KO) mouse brain. We also analyzed the expression of MIM in different brain regions at different ages. MIM is an I-BAR containing membrane curving protein, shown to be involved in dendritic spine initiation and dendritic branching in Purkinje cells in the cerebellum. Behavioral analysis of MIM KO mice revealed defects in both learning and reverse-learning, alterations in anxiety levels and reduced dominant behavior, and confirmed the previously described deficiency in motor coordination and pre-pulse inhibition. Anatomically, we observed enlarged brain ventricles and decreased cortical volume. Although MIM expression was relatively low in hippocampus after early development, hippocampal pyramidal neurons exhibited reduced density of thin and stubby dendritic spines. Learning deficiencies can be connected to all detected anatomical changes. Both behavioral and anatomical findings are typical for schizophrenia mouse models.

19.
Ultrastruct Pathol ; 43(4-5): 184-189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680599

RESUMO

The purpose of the present study was to demonstrate the localization of transmembrane mucin MUC1 on the outer layer of oral mucosal cells and the involvement of apical cell surface microplicae (MPL) in bioadhesion of MUC1. Tissue samples of six healthy subjects were obtained. First, the presence of MUC1 was examined with an immunohistochemical method using a monoclonal MUC1 antigen called HFMG1. Second, the localization of MUC1 was examined with immuno-scanning electron microscopy. Immunohistochemically, high intense staining for MUC1 (antigen HFMG1) was detected in the epithelial superficial layers. In the superficial layer, intense MUC1 expression was seen predominantly on the apical cell surface. On the apical epithelial cells, MUC1 was associated predominantly with MPL towards the oral cavity. The novelty of the results of the present study is that MPL serves a harbor of MUC1 in superficial epithelial cells towards the oral cavity. It is speculated that the transmembrane MUC1 is one component of the "oral mucosal barrier complex" representing a signaling pathway between saliva and mucosal cells.Abbreviations: MUC1: mucin1; MAM: membrane-anchored mucin; OMBC: oral mucosal barrier complex; LM: light microscopy; TEM: transmission electron microscopy; SEM: scanning electron microscopy; iSEM: immuno-scanning electron microscopy; MPL: microplicae.


Assuntos
Mucosa Bucal/metabolismo , Mucosa Bucal/ultraestrutura , Mucina-1/metabolismo , Mucina-1/ultraestrutura , Adulto , Idoso , Feminino , Humanos , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade
20.
Int J Mol Sci ; 20(15)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375001

RESUMO

In diabetic patients, high blood glucose induces alterations in retinal function and can lead to visual impairment due to diabetic retinopathy. In immortalized retinal pigment epithelial (RPE) cultures, high glucose concentrations are shown to lead to impairment in epithelial barrier properties. For the first time, the induced pluripotent stem-cell-derived retinal pigment epithelium (hiPSC-RPE) cell lines derived from type 2 diabetics and healthy control patients were utilized to assess the effects of glucose concentration on the cellular functionality. We show that both type 2 diabetic and healthy control hiPSC-RPE lines differentiate and mature well, both in high and normal glucose concentrations, express RPE specific genes, secrete pigment epithelium derived factor, and form a polarized cell layer. Here, type 2 diabetic hiPSC-RPE cells had a decreased barrier function compared to controls. Added insulin increased the epithelial cell layer tightness in normal glucose concentrations, and the effect was more evident in type 2 diabetics than in healthy control hiPSC-RPE cells. In addition, the preliminary functionality assessments showed that type 2 diabetic hiPSC-RPE cells had attenuated autophagy detected via ubiquitin-binding protein p62/Sequestosome-1 (p62/SQSTM1) accumulation, and lowered pro- matrix metalloproteinase 2 (proMMP2) as well as increased pro-MMP9 secretion. These results suggest that the cellular ability to tolerate stress is possibly decreased in type 2 diabetic RPE cells.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Retinopatia Diabética/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Epitélio Pigmentado da Retina/patologia , Linhagem Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Glucose/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Permeabilidade , Epitélio Pigmentado da Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA