Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cells ; 11(24)2022 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-36552881

RESUMO

The PSEN1 ΔE9 mutation causes a familial form of Alzheimer's disease (AD) by shifting the processing of amyloid precursor protein (APP) towards the generation of highly amyloidogenic Aß42 peptide. We have previously shown that the PSEN1 ΔE9 mutation in human-induced pluripotent stem cell (iPSC)-derived astrocytes increases Aß42 production and impairs cellular responses. Here, we injected PSEN1 ΔE9 mutant astrosphere-derived glial progenitors into newborn mice and investigated mouse behavior at the ages of 8, 12, and 16 months. While we did not find significant behavioral changes in younger mice, spatial learning and memory were paradoxically improved in 16-month-old PSEN1 ΔE9 glia-transplanted male mice as compared to age-matched isogenic control-transplanted animals. Memory improvement was associated with lower levels of soluble, but not insoluble, human Aß42 in the mouse brain. We also found a decreased engraftment of PSEN1 ΔE9 mutant cells in the cingulate cortex and significant transcriptional changes in both human and mouse genes in the hippocampus, including the extracellular matrix-related genes. Overall, the presence of PSEN1 ΔE9 mutant glia exerted a more beneficial effect on aged mouse brain than the isogenic control human cells likely as a combination of several factors.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Astrócitos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Aprendizagem Espacial , Envelhecimento
2.
Brain Behav Immun Health ; 23: 100466, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35694175

RESUMO

Understanding the pathological mechanisms unfolding after chronic traumatic brain injury (TBI) could reveal new therapeutic entry points. During the post-TBI sequel, the involvement of cerebrospinal fluid drainage through the meningeal lymphatic vessels was proposed. Here, we used K14-VEGFR3-Ig transgenic mice to analyze whether a developmental dysfunction of meningeal lymphatic vessels modifies post-TBI pathology. To this end, a moderate TBI was delivered by controlled cortical injury over the temporal lobe in male transgenic mice or their littermate controls. We performed MRI and a battery of behavioral tests over time to define the post-TBI trajectories. In vivo analyses were integrated by ex-vivo quantitative and morphometric examinations of the cortical lesion and glial cells. In post-TBI K14-VEGFR3-Ig mice, the recovery from motor deficits was protracted compared to littermates. This outcome is coherent with the observed slower hematoma clearance in transgenic mice during the first two weeks post-TBI. No other genotype-related behavioral differences were observed, and the volume of cortical lesions imaged by MRI in vivo, and confirmed by histology ex-vivo, were comparable in both groups. However, at the cellular level, post-TBI K14-VEGFR3-Ig mice exhibited an increased percentage of activated Iba1 microglia in the hippocampus and auditory cortex, areas that are proximal to the lesion. Although not impacting or modifying the structural brain damage and post-TBI behavior, a pre-existing dysfunction of meningeal lymphatic vessels is associated with morphological microglial activation over time, possibly representing a sub-clinical pathological imprint or a vulnerability factor. Our findings suggest that pre-existing mLV deficits could represent a possible risk factor for the overall outcome of TBI pathology.

3.
Glia ; 70(4): 650-660, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34936134

RESUMO

Previous studies have implicated several brain cell types in schizophrenia (SCZ), but the genetic impact of astrocytes is unknown. Considering their high complexity in humans, astrocytes are likely key determinants of neurodevelopmental diseases, such as SCZ. Human induced pluripotent stem cell (hiPSC)-derived astrocytes differentiated from five monozygotic twin pairs discordant for SCZ and five healthy subjects were studied for alterations related to high genetic risk and clinical manifestation of SCZ in astrocyte transcriptomics, neuron-astrocyte co-cultures, and in humanized mice. We found gene expression and signaling pathway alterations related to synaptic dysfunction, inflammation, and extracellular matrix components in SCZ astrocytes, and demyelination in SCZ astrocyte transplanted mice. While Ingenuity Pathway Analysis identified SCZ disease and synaptic transmission pathway changes in SCZ astrocytes, the most consistent findings were related to collagen and cell adhesion associated pathways. Neuronal responses to glutamate and GABA differed between astrocytes from control persons, affected twins, and their unaffected co-twins and were normalized by clozapine treatment. SCZ astrocyte cell transplantation to the mouse forebrain caused gene expression changes in synaptic dysfunction and inflammation pathways of mouse brain cells and resulted in behavioral changes in cognitive and olfactory functions. Differentially expressed transcriptomes and signaling pathways related to synaptic functions, inflammation, and especially collagen and glycoprotein 6 pathways indicate abnormal extracellular matrix composition in the brain as one of the key characteristics in the etiology of SCZ.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Animais , Astrócitos/metabolismo , Predisposição Genética para Doença/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Prosencéfalo/metabolismo , Esquizofrenia/genética
4.
Cells ; 10(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34831163

RESUMO

The accumulation of amyloid ß-protein (Aß) is one of the major pathological hallmarks of Alzheimer's disease. Insulin-degrading enzyme (IDE), a zinc-metalloprotease, is a key enzyme involved in Aß degradation, which, in addition to Aß production, is critical for Aß homeostasis. Here, we demonstrate that saturated medium-chain fatty acids (MCFAs) increase total Aß degradation whereas longer saturated fatty acids result in an inhibition of its degradation, an effect which could not be detected in IDE knock-down cells. Further analysis of the underlying molecular mechanism revealed that MCFAs result in an increased exosomal IDE secretion, leading to an elevated extracellular and a decreased intracellular IDE level whereas gene expression of IDE was unaffected in dependence of the chain length. Additionally, MCFAs directly elevated the enzyme activity of recombinant IDE, while longer-chain length fatty acids resulted in an inhibited IDE activity. The effect of MCFAs on IDE activity could be confirmed in mice fed with a MCFA-enriched diet, revealing an increased IDE activity in serum. Our data underline that not only polyunsaturated fatty acids such as docosahexaenoic acid (DHA), but also short-chain fatty acids, highly enriched, for example in coconut oil, might be beneficial in preventing or treating Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Ácidos Graxos/metabolismo , Insulisina/metabolismo , Proteólise , Animais , Biocatálise , Linhagem Celular , Camundongos Endogâmicos C57BL , Modelos Biológicos
5.
Neuroimage ; 234: 117987, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33762218

RESUMO

Isoflurane, the most commonly used preclinical anesthetic, induces brain plasticity and long-term cellular and molecular changes leading to behavioral and/or cognitive consequences. These changes are most likely associated with network-level changes in brain function. To elucidate the mechanisms underlying long-term effects of isoflurane, we investigated the influence of a single isoflurane exposure on functional connectivity, brain electrical activity, and gene expression. Male Wistar rats (n = 22) were exposed to 1.8% isoflurane for 3 h. Control rats (n = 22) spent 3 h in the same room without exposure to anesthesia. After 1 month, functional connectivity was evaluated with resting-state functional magnetic resonance imaging (fMRI; n = 6 + 6) and local field potential measurements (n = 6 + 6) in anesthetized animals. A whole genome expression analysis (n = 10+10) was also conducted with mRNA-sequencing from cortical and hippocampal tissue samples. Isoflurane treatment strengthened thalamo-cortical and hippocampal-cortical functional connectivity. Cortical low-frequency fMRI power was also significantly increased in response to the isoflurane treatment. The local field potential results indicating strengthened hippocampal-cortical alpha and beta coherence were in good agreement with the fMRI findings. Furthermore, altered expression was found in 20 cortical genes, several of which are involved in neuronal signal transmission, but no gene expression changes were noted in the hippocampus. Isoflurane induced prolonged changes in thalamo-cortical and hippocampal-cortical function and expression of genes contributing to signal transmission in the cortex. Further studies are required to investigate whether these changes are associated with the postoperative behavioral and cognitive symptoms commonly observed in patients and animals.


Assuntos
Anestésicos Inalatórios/administração & dosagem , Encéfalo/diagnóstico por imagem , Isoflurano/administração & dosagem , Imageamento por Ressonância Magnética/tendências , Rede Nervosa/diagnóstico por imagem , Plasticidade Neuronal/efeitos dos fármacos , Anestésicos Inalatórios/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Isoflurano/toxicidade , Masculino , Rede Nervosa/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos , Ratos Wistar , Fatores de Tempo
6.
Mol Neurodegener ; 15(1): 66, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33168021

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease and type 2 diabetes (T2D) plays an important role in conferring the risk for AD. Although AD and T2D share common features, the common molecular mechanisms underlying these two diseases remain elusive. METHODS: Mice with different AD- and/or tauopathy-linked genetic backgrounds (APPswe/PS1dE9, Tau P301L and APPswe/PS1dE9/Tau P301L) were fed for 6 months with standard diet or typical Western diet (TWD). After behavioral and metabolic assessments of the mice, the effects of TWD on global gene expression as well as dystrophic neurite and microglia pathology were elucidated. Consequently, mechanistic aspects related to autophagy, cell survival, phagocytic uptake as well as Trem2/Dap12 signaling pathway, were assessed in microglia upon modulation of PI3K-Akt signaling. To evaluate whether the mouse model-derived results translate to human patients, the effects of diabetic phenotype on microglial pathology were assessed in cortical biopsies of idiopathic normal pressure hydrocephalus (iNPH) patients encompassing ß-amyloid pathology. RESULTS: TWD led to obesity and diabetic phenotype in all mice regardless of the genetic background. TWD also exacerbated memory and learning impairment in APPswe/PS1dE9 and Tau P301L mice. Gene co-expression network analysis revealed impaired microglial responses to AD-related pathologies in APPswe/PS1dE9 and APPswe/PS1dE9/Tau P301L mice upon TWD, pointing specifically towards aberrant microglial functionality due to altered downstream signaling of Trem2 and PI3K-Akt. Accordingly, fewer microglia, which did not show morphological changes, and increased number of dystrophic neurites around ß-amyloid plaques were discovered in the hippocampus of TWD mice. Mechanistic studies in mouse microglia revealed that interference of PI3K-Akt signaling significantly decreased phagocytic uptake and proinflammatory response. Moreover, increased activity of Syk-kinase upon ligand-induced activation of Trem2/Dap12 signaling was detected. Finally, characterization of microglial pathology in cortical biopsies of iNPH patients revealed a significant decrease in the number of microglia per ß-amyloid plaque in obese individuals with concomitant T2D as compared to both normal weight and obese individuals without T2D. CONCLUSIONS: Collectively, these results suggest that diabetic phenotype in mice and humans mechanistically associates with abnormally reduced microglial responses to ß-amyloid pathology and further suggest that AD and T2D share overlapping pathomechanisms, likely involving altered immune function in the brain.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Microglia/patologia , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Camundongos , Microglia/metabolismo , Fenótipo
7.
J Neuroinflammation ; 17(1): 271, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933545

RESUMO

BACKGROUND: Increased physical exercise improves cognitive function and reduces pathology associated with Alzheimer's disease (AD). However, the mechanisms underlying the beneficial effects of exercise in AD on the level of specific brain cell types remain poorly investigated. The involvement of astrocytes in AD pathology is widely described, but their exact role in exercise-mediated neuroprotection warrant further investigation. Here, we investigated the effect of long-term voluntary physical exercise on the modulation of the astrocyte state. METHODS: Male 5xFAD mice and their wild-type littermates had free access to a running wheel from 1.5 to 7 months of age. A battery of behavioral tests was used to assess the effects of voluntary exercise on cognition and learning. Neuronal loss, impairment in neurogenesis, beta-amyloid (Aß) deposition, and inflammation were evaluated using a variety of histological and biochemical measurements. Sophisticated morphological analyses were performed to delineate the specific involvement of astrocytes in exercise-induced neuroprotection in the 5xFAD mice. RESULTS: Long-term voluntary physical exercise reversed cognitive impairment in 7-month-old 5xFAD mice without affecting neurogenesis, neuronal loss, Aß plaque deposition, or microglia activation. Exercise increased glial fibrillary acid protein (GFAP) immunoreactivity and the number of GFAP-positive astrocytes in 5xFAD hippocampi. GFAP-positive astrocytes in hippocampi of the exercised 5xFAD mice displayed increases in the numbers of primary branches and in the soma area. In general, astrocytes distant from Aß plaques were smaller in size and possessed simplified processes in comparison to plaque-associated GFAP-positive astrocytes. Morphological alterations of GFAP-positive astrocytes occurred concomitantly with increased astrocytic brain-derived neurotrophic factor (BDNF) and restoration of postsynaptic protein PSD-95. CONCLUSIONS: Voluntary physical exercise modulates the reactive astrocyte state, which could be linked via astrocytic BDNF and PSD-95 to improved cognition in 5xFAD hippocampi. The molecular pathways involved in this modulation could potentially be targeted for benefit against AD.


Assuntos
Doença de Alzheimer/terapia , Astrócitos/fisiologia , Aprendizagem em Labirinto/fisiologia , Condicionamento Físico Animal/métodos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Teste de Esforço/métodos , Teste de Esforço/tendências , Hipocampo/metabolismo , Hipocampo/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Condicionamento Físico Animal/tendências , Resultado do Tratamento
8.
Behav Brain Res ; 376: 112158, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31442549

RESUMO

This study assessed the development of motor deficits in female hTau.P301S transgenic mice from 1.5 to 5.5 months of age. The test battery included clasping reflex, grid hanging, Rotarod test, spontaneous explorative activity, Catwalk gait analysis, and nest building. Starting from the age of 2-3 months the mice showed marked hyperactivity, abnormal placing of weight on the hindlimbs and defective nest building in their home cage. These behavioral impairments did not progress with age. In addition, there was a progressive development of hindlimb clasping, inability to stay on a rotating rod or hang on a metal grid, and gait impairment. Depending on the measured output parameter, the motor impairment became significant from 3 to 4 months onwards and rapidly worsened until the age of 5.5 months with little inter-individual variation. The progressive motor impairment was paralleled by a robust increase in AT8 p-tau positive neurons in deep cerebellar nuclei and pontine brainstem between 3 and 5.5 months of age. The quick and steadily progressive motor impairment between 3 and 5.5 months of age accompanied by robust development of tau pathology in the hindbrain makes this mouse well suited for preclinical studies aiming at slowing down tau pathology associated with primary or secondary tauopathies.


Assuntos
Transtornos Motores/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Fatores Etários , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia , Neurônios/metabolismo , Tauopatias/metabolismo
9.
Neuropharmacology ; 153: 63-72, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31029587

RESUMO

HIF prolyl 4-hydroxylases (HIF-P4Hs, also known as PHDs and EGLNs) are crucial enzymes that modulate the hypoxia inducible factor (HIF) response and help to maintain cellular oxygen homeostasis. This function is especially well-known for cytoplasmic or nuclear enzymes HIF-P4H-1-3 (PHDs 1-3, EGLNs 2, 1 and 3, respectively), but the physiological role is still obscure for a fourth suggested HIF-P4H, P4H-TM that is a transmembrane protein and resides in the endoplasmic reticulum. Recently however, both experimental and clinical evidence of the P4H-TM involvement in CNS physiology has emerged. In this study, we first investigated the expression pattern of P4H-TM in the mouse brain and found a remarkably selective abundance in brains areas that are involved in social behaviors and anxiety including amygdala, lateral septum and bed nucleus of stria terminalis. Next, we performed behavioral assays in P4h-tm-/- mice to investigate a possible phenotype associated to these brain areas. In locomotor activity tests, we found that P4h-tm-/- mice were significantly more active than their wild-type (WT) littermate mice, and habituation to test environment did not abolish this effect. Instead, spatial learning and memory seemed normal in P4h-tm-/- mice as assessed by Morris swim task. In several tests assessing anxiety and fear responses, P4h-tm-/- mice showed distinct courageousness, and they presented increased interaction towards fellow mice in social behavior tests. Most strikingly, P4h-tm-/- mice practically lacked behavioral despair response, a surrogate marker of depression, in forced swim and tail suspension tests. Instead, mutant mice of all other Hif-p4h isoforms lacked such a behavioral phenotype. In summary, this study presents a remarkable anatomy-physiology association between the brain expression of P4H-TM and the behavioral phenotype in P4h-tm-/- mice. Future studies will reveal whether P4H-TM may serve as a novel target for anti-depressant and anti-anxiety pharmacotherapy.


Assuntos
Ansiedade/genética , Ansiedade/psicologia , Medo/fisiologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Mutação com Perda de Função/genética , Comportamento Social , Animais , Ansiedade/metabolismo , Medo/psicologia , Feminino , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Locomoção/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Epilepsy Res ; 151: 67-74, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30836238

RESUMO

Extracellular proteolysis initiated by the binding of urokinase-type plasminogen activator (uPA) to its receptor (uPAR) regulates the development of inhibitory neuronal circuits in the cerebral cortex and tissue remodeling after epileptogenic brain injury. To study the function of different components of the uPA-uPAR system on behavior and epileptogenesis, and to complement our previous studies on naïve and injured mice deficient in the uPA-encoding gene Plau or the uPAR-encoding gene Plaur, we analyzed the behavioral phenotype, seizure susceptibility, and perineuronal nets surrounding parvalbumin-positive inhibitory interneurons in Plau and Plaur (double knockout dKO) mice. In a climbing test, dKO mice showed reduced interest towards the environment as compared with Wt mice (p < 0.01). In a social approach test, however, dKO mice spent more time than Wt mice exploring the compartment containing a stranger mouse than the empty compartment (p < 0.05). Moreover, in a social interaction test, dKO mice exhibited increased contact time (p < 0.01). Compared with Wt mice, the dKO mice also had a longer single contact duration (p < 0.001) with the stranger mouse. In the elevated plus-maze, grooming, and marble burying tests, the anxiety level of dKO mice did not differ from that of Wt mice. Rearing time in an exploratory activity test, and spatial learning and memory in the Morris swim navigation task were also comparable between dKO and Wt mice. In the pentylenetetrazol (PTZ) seizure-susceptibility test, dKO mice had a shorter latency to the first epileptiform spike (p = 0.0001) and a greater total number of spikes (p < 0.001) than Wt mice. The dKO genotype did not affect the number of cortical perineuronal nets. Our findings indicate that Plau/Plaur-deficiency leads to a more social phenotype toward other mice with diminished interest in the surrounding environment, and increased seizure susceptibility.


Assuntos
Regulação da Expressão Gênica/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/deficiência , Convulsões/metabolismo , Comportamento Social , Ativador de Plasminogênio Tipo Uroquinase/deficiência , Animais , Ansiedade/etiologia , Ansiedade/genética , Aprendizagem da Esquiva/fisiologia , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/genética , Convulsivantes/toxicidade , Modelos Animais de Doenças , Suscetibilidade a Doenças/induzido quimicamente , Suscetibilidade a Doenças/fisiopatologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Asseio Animal/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pentilenotetrazol/toxicidade , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Convulsões/induzido quimicamente , Convulsões/patologia , Ativador de Plasminogênio Tipo Uroquinase/genética
11.
Neurobiol Aging ; 75: 98-108, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30554086

RESUMO

Type 2 diabetes mellitus (T2DM) increases the risk for Alzheimer's disease (AD). Human AD brains show reduced glucose metabolism as measured by [18F]fluoro-2-deoxy-2-D-glucose positron emission tomography (FDG-PET). Here, we used 14-month-old wild-type (WT) and APPSwe/PS1dE9 (APP/PS1) transgenic mice to investigate how a single dose of intranasal insulin modulates brain glucose metabolism using FDG-PET and affects spatial learning and memory. We also assessed how insulin influences the activity of Akt1 and Akt2 kinases, the expression of glial and neuronal markers, and autophagy in the hippocampus. Intranasal insulin moderately increased glucose metabolism and specifically activated Akt2 and its downstream signaling in the hippocampus of WT, but not APP/PS1 mice. Furthermore, insulin differentially affected the expression of homeostatic microglia markers P2ry12 and Cx3cr1 and autophagy in the hippocampus of WT and APP/PS1 mice. We found no evidence that a single dose of intranasal insulin improves overnight memory. Our results suggest that intranasal insulin exerts diverse effects on Akt2 signaling, autophagy, and the homeostatic status of microglia depending on the degree of AD-related pathology.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Insulina/metabolismo , Memória/efeitos dos fármacos , Camundongos , Neurônios/metabolismo , Presenilina-1/metabolismo
12.
Environ Res ; 167: 759-769, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30243651

RESUMO

We assessed genotoxic effects of intermediate frequency magnetic fields (MF) in vitro and in vivo. Rat primary astrocytes were exposed for 24 h to a 7.5 kHz MF at a magnetic flux density of 30 or 300 µT. Male C57BL/6 J mice were exposed continuously for 5 weeks to a 7.5 kHz MF at 12 or 120 µT, and blood samples were collected for the genotoxicity assays. To evaluate possible co-genotoxicity, the in vitro experiments included combined exposure with menadione (an agent that induces mitochondrial superoxide production and DNA damage) and methyl methanesulfonate (an alkylating agent). DNA damage and DNA repair (in vitro) were measured using the alkaline Comet assay and formation of micronuclei was assessed microscopically (in vivo) or using flow cytometry (in vitro). The results did not support genotoxicity or co-genotoxicity of 7.5 kHz MFs at magnetic flux densities up to 300 µT in vitro or in vivo. On the contrary, there was some evidence that exposure to 7.5 kHz MFs might reduce the level of genetic damage. Strongest indication of any biological effects was obtained from measurements of relative cell number, which was significantly and consistently increased after MF exposure in all in vitro experiments. Health implications of this finding are unclear, but it suggests that 7.5 kHz MFs may stimulate cell proliferation or suppress cell death.


Assuntos
Dano ao DNA , Campos Magnéticos , Animais , Ensaio Cometa , Reparo do DNA/fisiologia , Campos Magnéticos/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes para Micronúcleos , Ratos
13.
Neurobiol Aging ; 71: 127-141, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30138766

RESUMO

Amyloid plaque-forming transgenic mice display neuronal hyperexcitability, epilepsy, and sudden deaths in early adulthood. However, it is unknown whether hyperexcitability persists until middle ages when memory impairment manifests. We recorded multichannel video electroencephalography (EEG), local field potentials, and auditory evoked potentials in transgenic mice carrying mutated human amyloid precursor protein (APP) and presenilin-1 (PS1) genes and wild-type littermates at 14-16 months and compared the results with data we have earlier collected from 4-month-old mice. Furthermore, we monitored acoustic startle responses in other APP/PS1 and wild-type mice from 3 to 11 months of age. Independent of the age APP/PS1 mice demonstrated increased cortical power at 8-60 Hz. They also displayed over 5-fold increase in the occurrence of spike-wave discharges and augmented auditory evoked potentials compared with nontransgenic littermates. In contrast to evoked potentials, APP/PS1 mice showed normalization of acoustic startle responses with aging. Increased cortical power and spike-wave discharges provide powerful new biomarkers to monitor progression of amyloid pathology in preclinical intervention studies.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Ritmo beta , Córtex Cerebral/fisiologia , Excitabilidade Cortical , Presenilina-1/genética , Animais , Ondas Encefálicas , Potenciais Evocados Auditivos , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reflexo de Sobressalto
14.
J Neurosci ; 38(17): 4243-4258, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29626165

RESUMO

Collagen XIII occurs as both a transmembrane-bound and a shed extracellular protein and is able to regulate the formation and function of neuromuscular synapses. Its absence results in myasthenia: presynaptic and postsynaptic defects at the neuromuscular junction (NMJ), leading to destabilization of the motor nerves, muscle regeneration and atrophy. Mutations in COL13A1 have recently been found to cause congenital myasthenic syndrome, characterized by fatigue and chronic muscle weakness, which may be lethal. We show here that muscle defects in collagen XIII-deficient mice stabilize in adulthood, so that the disease is not progressive until very late. Sciatic nerve crush was performed to examine how the lack of collagen XIII or forced expression of its transmembrane form affects the neuromuscular synapse regeneration and functional recovery following injury. We show that collagen XIII-deficient male mice are unable to achieve complete NMJ regeneration and functional recovery. This is mainly attributable to presynaptic defects that already existed in the absence of collagen XIII before injury. Shedding of the ectodomain is not required, as the transmembrane form of collagen XIII alone fully rescues the phenotype. Thus, collagen XIII could serve as a therapeutic agent in cases of injury-induced PNS regeneration and functional recovery. We conclude that intrinsic alterations at the NMJ in Col13a1-/- mice contribute to impaired and incomplete NMJ regeneration and functional recovery after peripheral nerve injury. However, such alterations do not progress once they have stabilized in early adulthood, emphasizing the role of collagen XIII in NMJ maturation.SIGNIFICANCE STATEMENT Collagen XIII is required for gaining and maintaining the normal size, complexity, and functional capacity of neuromuscular synapses. Loss-of-function mutations in COL13A1 cause congenital myasthenic syndrome 19, characterized by postnatally progressive muscle fatigue, which compromises patients' functional capacity. We show here in collagen XIII-deficient mice that the disease stabilizes in adulthood once the NMJs have matured. This study also describes a relevant contribution of the altered NMJ morphology and function to neuromuscular synapses, and PNS regeneration and functional recovery in collagen XIII-deficient mice after peripheral nerve injury. Correlating the animal model data on collagen XIII-associated congenital myasthenic syndrome, it can be speculated that neuromuscular connections in congenital myasthenic syndrome patients are not able to fully regenerate and restore normal functionality if exposed to peripheral nerve injury.


Assuntos
Colágeno Tipo XIII/metabolismo , Regeneração Nervosa , Junção Neuromuscular/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Animais , Colágeno Tipo XIII/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Junção Neuromuscular/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Recuperação de Função Fisiológica
15.
Environ Res ; 162: 27-34, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276976

RESUMO

Electromagnetic fields are ubiquitous in the environment. Human exposure to intermediate frequency (IF) fields is increasing due to applications like electronic article surveillance systems, wireless power transfer, and induction heating cooking hobs. However, there are limited data on possible health effects of exposure to IF magnetic fields (MF). In the present study, we set out to assess cognitive and behavioural effects of IF MF in mice exposed during prenatal and early postnatal periods. Pregnant female mice were exposed continuously to 7.5kHz MFs at 12 and 120µT, from mating until weaning of pups. Sham exposed pregnant mice were used as a control group. A behavioural teratology study was conducted on the male offspring at two months of age to detect possible effects on the developing nervous system. Body weight development did not differ between the exposure groups. The exposure did not alter spontaneous motor activity when exploring a novel cage or anxiety in novelty-suppressed feeding or marble burying tests. Improved performance in the Rotarod task was observed in the 12µT group, while the 120µT exposure group swam more slowly than the sham exposed group in the Morris swim navigation task. However, indices of learning and memory (path length and escape latency during task acquisition and search bias during the probe test) did not differ between the exposure groups. Furthermore, the passive avoidance task did not indicate any impairment of long-term memory over a 48h interval in the exposed groups. In a post-mortem histopathological analysis, there was no evidence for an effect of IF MF exposure on astroglial reactivity or hippocampal neurogenesis. The results suggest that the IF MF used did not have detrimental effects on spatial learning and memory or histological markers of tissue reaction. The two statistically significant findings that were observed (improved performance in the Rotarod task in the 12µT group and decreased swimming speed in the 120µT group) are likely to be chance findings, as they do not form an internally consistent, dose-dependent pattern indicative of specific developmental effects.


Assuntos
Comportamento Animal , Campos Magnéticos , Memória , Fenótipo , Efeitos Tardios da Exposição Pré-Natal , Animais , Campos Eletromagnéticos , Comportamento Exploratório , Feminino , Aprendizagem , Campos Magnéticos/efeitos adversos , Masculino , Camundongos , Gravidez , Reprodução
16.
PLoS One ; 12(12): e0188880, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29206232

RESUMO

Human exposure to intermediate frequency magnetic fields (MF) is increasing due to applications like electronic article surveillance systems and induction heating cooking hobs. However, limited data is available on their possible health effects. The present study assessed behavioral and histopathological consequences of exposing mice to 7.5 kHz MF at 12 or 120 µT for 5 weeks. No effects were observed on body weight, spontaneous activity, motor coordination, level of anxiety or aggression. In the Morris swim task, mice in the 120 µT group showed less steep learning curve than the other groups, but did not differ from controls in their search bias in the probe test. The passive avoidance task indicated a clear impairment of memory over 48 h in the 120 µT group. No effects on astroglial activation or neurogenesis were observed in the hippocampus. The mRNA expression of brain-derived neurotrophic factor did not change but expression of the proinflammatory cytokine tumor necrosis factor alpha mRNA was significantly increased in the 120 µT group. These findings suggest that 7.5 kHz MF exposure may lead to mild learning and memory impairment, possibly through an inflammatory reaction in the hippocampus.


Assuntos
Comportamento Animal , Campos Magnéticos , Transtornos da Memória/etiologia , Animais , Aprendizagem da Esquiva , Peso Corporal , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , RNA Mensageiro/genética
18.
Front Aging Neurosci ; 8: 41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014054

RESUMO

Numerous studies have reported neuroprotective effects of pyruvate when given in systemic injections. Impaired glucose uptake and metabolism are found in Alzheimer's disease (AD) and in AD mouse models. We tested whether dietary pyruvate supplementation is able to provide added energy supply to brain and thereby attenuate aging- or AD-related cognitive impairment. Mice received ~800 mg/kg/day Na-pyruvate in their chow for 2-6 months. In middle-aged wild-type mice and in 6.5-month-old APP/PS1 mice, pyruvate facilitated spatial learning and increased exploration of a novel odor. However, in passive avoidance task for fear memory, the treatment group was clearly impaired. Independent of age, long-term pyruvate increased explorative behavior, which likely explains the paradoxical impairment in passive avoidance. We also assessed pyruvate effects on body weight, muscle force, and endurance, and found no effects. Metabolic postmortem assays revealed increased energy compounds in nuclear magnetic resonance spectroscopy as well as increased brain glycogen storages in the pyruvate group. Pyruvate supplementation may counteract aging-related behavioral impairment, but its beneficial effect seems related to increased explorative activity rather than direct memory enhancement.

19.
Curr Alzheimer Res ; 12(10): 923-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26502816

RESUMO

Transgenic APPswe/PS1dE9 mice modeling Alzheimer's disease demonstrate ongoing accumulation of ß-amyloid fragments resulting in formation of amyloid plaques that starts at the age of 4-5 months. Buildup of ß-amyloid fragments is accompanied by impairment of muscarinic transmission that becomes detectable at this age, well before the appearance of cognitive deficits that manifest around the age of 12 months. We have recently demonstrated that long-term feeding of trangenic mice with specific isocaloric fish oil-based diets improves specific behavioral parameters. Now we report on the influence of short-term feeding (3 weeks) of three isocaloric diets supplemented with Fortasyn (containing fish oil and ingredients supporting membrane renewal), the plant sterol stigmasterol together with fish oil, and stigmasterol alone on markers of cholinergic neurotransmission in the hippocampus of 5-month-old transgenic mice and their wild-type littermates. Transgenic mice fed normal diet demostrated increase in ChAT activity and attenuation of carbachol-stimulated GTP-γ(35)S binding compared to wild-type mice. None of the tested diets compared to control diet influenced the activities of ChAT, AChE, BuChE, muscarinic receptor density or carbachol-stimulated GTP-γ(35)S binding in wild-type mice. In contrast, all experimental diets increased the potency of carbachol in stimulating GTP-γ(35)S binding in trangenic mice to the level found in wild-type animals. Only the Fortasyn diet increased markers of cholinergic synapses in transgenic mice. Our data demonstrate that even short-term feeding of transgenic mice with chow containing specific lipid-based dietary supplements can influence markers of cholinergic synapses and rectify impaired muscarinic signal transduction that develops in transgenic mice.


Assuntos
Doença de Alzheimer/dietoterapia , Doença de Alzheimer/fisiopatologia , Gorduras na Dieta/administração & dosagem , Hipocampo/fisiopatologia , Receptores Muscarínicos/metabolismo , Transmissão Sináptica/fisiologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Caspase 8/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo
20.
J Nutr Biochem ; 25(2): 157-69, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24445040

RESUMO

Dietary fish oil, providing n3 polyunsaturated fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), associates with reduced dementia risk in epidemiological studies and reduced amyloid accumulation in Alzheimer mouse models. We now studied whether additional nutrients can improve the efficacy of fish oil in alleviating cognitive deficits and amyloid pathology in APPswe/PS1dE9 transgenic and wild-type mice. We compared four isocaloric (5% fat) diets. The fish oil diet differed from the control diet only by substituted fish oil. Besides fish oil, the plant sterol diet was supplemented with phytosterols, while the Fortasyn diet contained as supplements precursors and cofactors for membrane synthesis, viz. uridine-monophosphate; DHA and EPA; choline; folate; vitamins B6, B12, C and E; phospholipids and selenium. Mice began the special diets at 5 months and were sacrificed at 14 months after behavioral testing. Transgenic mice, fed with control chow, showed poor spatial learning, hyperactivity in exploring a novel cage and reduced preference to explore novel odors. All fish-oil-containing diets increased exploration of a novel odor over a familiar one. Only the Fortasyn diet alleviated the spatial learning deficit. None of the diets influenced hyperactivity in a new environment. Fish-oil-containing diets strongly inhibited ß- and γ-secretase activity, and the plant sterol diet additionally reduced amyloid-ß 1-42 levels. These data indicate that beneficial effects of fish oil on cognition in Alzheimer model mice can be enhanced by adding other specific nutrients, but this effect is not necessarily mediated via reduction of amyloid accumulation.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amiloide/metabolismo , Encéfalo/metabolismo , Transtornos Cognitivos/tratamento farmacológico , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Animais , Cromatografia Líquida de Alta Pressão , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA