Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1322881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434137

RESUMO

Objectives: This study aimed to provide an improved energy expenditure estimation for heavy-load physical labor using accelerometer data and heart rate (HR) measured by wearables and to support food preparation and supply management for disaster relief and rescue operations as an expedition team. Methods: To achieve an individually optimized estimation for energy expenditure, a model equation parameter was determined based on the measurements of physical activity and HR during simulated rescue operations. The metabolic equivalent of task (MET), which was measured by using a tri-axial accelerometer and individual HR, was used, where two (minimum and maximum) or three (minimum, intermediate, and maximum) representative reference points were selected for each individual model fitting. In demonstrating the applicability of our approach in a realistic situation, accelerometer-based METs and HR of 30 males were measured using the tri-axial accelerometer and wearable HR during simulated rescue operations over 2 days. Results: Data sets of 27 rescue operations (age:34.2 ± 7.5 years; body mass index (BMI):22.9 ± 1.5 kg/m2) were used for the energy expenditure estimation after excluding three rescue workers due to their activity type and insufficient HR measurement. Using the combined approach with a tri-axial accelerometer and HR, the total energy expenditure increased by 143% for two points and 133% for three points, compared with the estimated total energy expenditure using only the accelerometer-based method. Conclusion: The use of wearables provided a reasonable estimation of energy expenditure for physical workers with heavy equipment. The application of our approach to disaster relief and rescue operations can provide important insights into nutrition and healthcare management.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37174258

RESUMO

The management of nutrition, food, and health for disaster relief personnel is one of the crucial aspects for carrying out effective rescue activities during large-scale natural disasters, such as a big earthquake, flooding, and landslide following heavy rainfall or man-made disasters, such as widespread fire in industrial areas. Rescue workers, such as fire fighters and rescue teams who work on the disaster relief operations, have to work long, hard, and irregular hours that require energy (both intake and expenditure), with especially altered eating patterns. Reliable estimates of the energy expenditure (TEE) for such disaster relief operations have not been fully established. Here, we propose to clarify the energy expenditure for each type of large-scale disaster activity conducted by fire fighters. Thirty fire fighters (survey participants in this research) who participated in the simulation training of large-scale disaster activities wore tri-axial accelerometers and heart rate monitors during training; and, post-training, 28 fire fighters submitted complete activity record tables. An estimation formula combining tri-axial accelerometer and heart rate monitor data was used. Additionally, energy expenditure per hour (excluding resting energy expenditure: REE) (per average body weight of participants) was calculated for 10 types of large-scale disaster response activities. We propose utilization of these data as a reference value for examining the TEE of firefighting and rescue operations in future large-scale disasters.


Assuntos
Desastres , Dispositivos Eletrônicos Vestíveis , Humanos , Frequência Cardíaca , Metabolismo Energético/fisiologia , Acelerometria
3.
Nutrients ; 13(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34444948

RESUMO

The present study was conducted to estimate total energy expenditure (TEE) of fire-fighters using tri axial-accelerometers in conjunction with an activity log survey on a large number of subjects undergoing training mimicking a large-scale disaster. Subjects were 240 fire-fighters participating in a two-day fire-fighting training dedicated to large-scale natural disasters. Data was analyzed by job type of activity group and the job rank, and by comparing the average. The average TEE of the total survey training period is about 3619 (±499) kcal, which is the same value of expenditure for professional athletes during the soccer game season. From the activity group, the rescue and other teams consumed significantly more energy than the fire and Emergency Medical Team (EMS) teams. From the job rank, Fire Captain (conducting position) consumed significantly lower energy than the Fire Lieutenant and Fire Sergeant. Furthermore, it was found that a middle position rank consumed the most energy. This research supports a need to reconsider the current rescue food (and protocols) to supplement the energy expenditure of fire-fighters. In addition, since there was a significant difference between the job type and the job rank, it is necessary to examine the energy amount and shape suitable for each.


Assuntos
Acelerometria/métodos , Metabolismo Energético , Bombeiros/estatística & dados numéricos , Trabalho de Resgate , Trabalho/fisiologia , Acelerometria/instrumentação , Adulto , Desastres , Bombeiros/educação , Humanos , Masculino , Necessidades Nutricionais , Treinamento por Simulação , Inquéritos e Questionários
4.
Biochem Biophys Res Commun ; 572: 80-85, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34358967

RESUMO

Signal-transducing adaptor protein (STAP)-2 is one of the STAP family adaptor proteins and ubiquitously expressed in a variety types of cells. Although STAP-2 is required for modification of FcεRI signal transduction in mast cells, other involvement of STAP-2 in mast cell functions is unknown, yet. In the present study, we mainly investigated functional roles of STAP-2 in IL-33-induced mast cell activation. In STAP-2-deficient, but not STAP-1-deficient, mast cells, IL-33-induced IL-6 and TNF-α production was significantly decreased compared with that of wild-type mast cells. In addition, STAP-2-deficiency greatly reduced TLR4-mediated mast cell activation and cytokine production. For the mechanisms, STAP-2 directly binds to IKKα after IL-33 stimulation, leading to elevated NF-κB activity. In conclusion, STAP-2, but not STAP-1, participates in IL-33-induced mast cells activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Interleucina-33/metabolismo , Mastócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Células Cultivadas , Citocinas/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA