Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 249: 120890, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016222

RESUMO

Emerging electrochemical disinfection techniques provide a promising pathway to the biofouling control of reverse osmosis (RO) process. However, the comparative effectiveness and mechanism of it under flow-through conditions with low voltage remains unclear. This study investigated the effect of a flow-through electrode system (FES) with both direct current (DC) and alternating pulse current (AC) on RO biofouling control compared with chlorine disinfection. At the initial stage of biofouling development, the normalized flux of AC-FES (67% on Day 5) was saliently higher than the control group (56% on Day 5). Subsequently, the normalized fluxes of each group tended similarity in their differences until the 20th day. After mild chemical cleaning, the RO membrane in the AC-FES group reached the highest chemical cleaning efficiency of 58%, implying its foulant was more readily removable and the biofouling was more reversible. The biofouling layer in the DC-FES group was also found to be easily cleanable. Morphological analysis suggested that the thickness and compactness of the fouling layers were the major reasons for the fouling behavior difference. The abundance of 4 fouling-related abundant genera (>1%), which were Pseudomonas, Thiobacillus, Sphingopyxis, and Mycobacterium exhibited a salient correlation with the biofouling degree. The operating cost of FES was also lower than that of chlorine disinfection. In summary, AC-FES is a promising alternative to chlorine disinfection in RO biofouling control, as it caused less and easy-cleaning biofouling layer mainly due to two advantages: a) reducing the regrowth potential after disinfection of the bacteria, leading to alleviated initial fouling, (b) reshaping the microbial community to those with weaker biofilm formation capacity.


Assuntos
Incrustação Biológica , Purificação da Água , Águas Residuárias , Incrustação Biológica/prevenção & controle , Cloro , Membranas Artificiais , Osmose , Purificação da Água/métodos
2.
Water Res ; 244: 120531, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659185

RESUMO

With the widespread use of chlorine disinfection, chlorine-resistant bacteria (CRB) in water treatment systems have gained public attention. Bacterial chlorine resistance has been found positively correlated with extracellular polymeric substance (EPS) secretion. In this study, we selected the most suitable CRB controlling method against eight bacterial strains with different chlorine resistance among chloramine, ozone, and ultraviolet (UV) disinfection, analyzed the resistance mechanisms, clarified the contribution of EPS to disinfection resistance, and explored the role of carbon source metabolism capacity. Among all the disinfectants, UV disinfection showed the highest disinfection capacity by achieving the highest average and median log inactivation rates for the tested strains. For Bacillus cereus CR19, the strain with the highest chlorine resistance, 40 mJ/cm2 UV showed a 1.90 log inactivation, which was much higher than that of 2 mg-Cl2/L chlorine (0.67 log), 2 mg-Cl2/L chloramine (1.68 log), and 2 mg/L ozone (0.19 log). Meanwhile, the UV resistance of the bacteria did not correlate with EPS secretion. These characteristics render UV irradiation the best CRB controlling disinfection method. Chloramine was found to have a generally high inactivation efficiency for bacteria with high chlorine-resistance, but a low inactivation efficiency for low chlorine-resistant ones. Although EPS consumed up to 56.7% of chloramine which an intact bacterial cell consumed, EPS secretion could not explain chloramine resistance. Thus, chloramine is an acceptable CRB control method. Similar to chlorine, ozone generally selected high EPS-secreting bacteria, with EPS consuming up to 100% ozone. Therefore, ozone is not an appropriate method for controlling CRB with high EPS secretion. EPS played an important role in all types of disinfection resistance, and can be considered the main mechanism for bacterial chlorine and ozone disinfection resistance. However, as EPS was not the main resistance mechanism in UV and chloramine disinfection, CRB with high EPS secretion were inactivated more effectively. Furthermore, carbon source metabolism was found related to the multiple resistance of bacteria. Those with low carbon source metabolism capacity tended to have higher multiple resistance, especially to chlorine, ozone, and UV light. Distinctively, among the tested gram-negative bacteria, in contrast to other disinfectants, chloramine resistance was negatively correlated with EPS secretion and positively correlated with carbon source metabolism capacity, suggesting a special disinfection mechanism.


Assuntos
Desinfetantes , Ozônio , Cloro/farmacologia , Cloraminas/farmacologia , Desinfecção , Matriz Extracelular de Substâncias Poliméricas , Halogênios , Bactérias , Desinfetantes/farmacologia , Carbono , Cloretos
3.
Sci Total Environ ; 904: 166297, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595918

RESUMO

With the increasingly serious shortage of water resources globally, it has been paid more attention on how to secure the biosafety of reclaimed water and other non-traditional water sources. However, the 3 most applied disinfection technics, which are chlorine, ultraviolet (UV), and ozone disinfection, all have their disadvantages of selecting undesired bacteria and low energy utilization efficiency. Electrode disinfection is a promising solution, but the current electrode disinfection process still needs to be optimized in terms of the use conditions of the configuration reactivation. In this paper, we built a flow electrode system (FES). To evaluate the disinfection techniques more precisely, we isolated ultraviolet-resistant bacteria (URB) bacteria from the water of the full-scale water plant and tested the disinfection performance of FES and UV. The inactivation rate, reactivation potential, and energy consumption were analyzed. FES could inactivate 99.99 % of the URB and cause irreversible damage to the residual bacteria. FES could make all bacteria strains apoptosis in the subsequent 24 h of storage after alternating pulse current (APC) treatment, 3 V, within 27.7 s. Besides, the energy consumption of FES is about 2 orders lower than that of UV disinfection under the same inactivation rate. In summary, APC-FES is an efficient and low-carbon alternative for future water disinfection, which could achieve the ideal disinfection effect of a high inactivation rate, no reactivation, and low energy consumption.


Assuntos
Purificação da Água , Água , Carbono , Bactérias , Desinfecção/métodos , Purificação da Água/métodos , Cloro/farmacologia , Eletrodos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA