Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Hist Fam ; 28(2): 181-197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288160

RESUMO

The central question in this special issue is a relatively new one in anthropometric history: how did body height affect the life course? This raises the issue of whether such an effect merely captures the underlying early-life conditions that impact growth, or whether some independent effect of stature can be discerned. Further, the effects of height on later-life outcomes need not be linear. These effects may also differ by gender, by context (time and place), and among life course domains such as occupational success, family formation or health in later life. The ten research articles in this issue use a plethora of historical sources on individuals, such as prison and hospital records, conscript records, genealogies and health surveys. These articles employ a variety of methods to distinguish between early-life and later-life effects, between intra- and intergenerational processes and between biological and socio-economic factors. Importantly, all articles discuss the impact of the specific context on their results to understand these effects. The overall conclusion is that independent later-life outcomes of height are rather ambiguous, and seem to stem more from the perception of physical strength, health and intelligence associated with height than from height itself. This special issue also reflects on intergenerational effects of the later-life outcomes of height. As populations have grown taller, it is possible that height and later-life outcomes have formed a 'virtuous cycle', resulting in taller, healthier and wealthier populations. So far, however, our research offers little support for this hypothesis.

2.
Mol Cell ; 82(14): 2650-2665.e12, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35662397

RESUMO

Coenzyme A (CoA) is essential for metabolism and protein acetylation. Current knowledge holds that each cell obtains CoA exclusively through biosynthesis via the canonical five-step pathway, starting with pantothenate uptake. However, recent studies have suggested the presence of additional CoA-generating mechanisms, indicating a more complex system for CoA homeostasis. Here, we uncovered pathways for CoA generation through inter-organismal flows of CoA precursors. Using traceable compounds and fruit flies with a genetic block in CoA biosynthesis, we demonstrate that progeny survive embryonal and early larval development by obtaining CoA precursors from maternal sources. Later in life, the microbiome can provide the essential CoA building blocks to the host, enabling continuation of normal development. A flow of stable, long-lasting CoA precursors between living organisms is revealed. This indicates the presence of complex strategies to maintain CoA homeostasis.


Assuntos
Coenzima A , Microbiota , Animais , Coenzima A/genética , Coenzima A/metabolismo , Drosophila/metabolismo , Feminino , Humanos , Mães , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Zigoto/metabolismo
3.
Nucleic Acids Res ; 50(W1): W330-W336, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35641095

RESUMO

Recent advances in the field of high throughput (meta-)transcriptomics and proteomics call for easy and rapid methods enabling to explore not only single genes or proteins but also extended biological systems. Gene set enrichment analysis is commonly used to find relations in a set of genes and helps to uncover the biological meaning in results derived from high-throughput data. The basis for gene set enrichment analysis is a solid functional classification of genes. Here, we describe a comprehensive database containing multiple functional classifications of genes of all (>55 000) publicly available complete bacterial genomes. In addition to the most common functional classes such as COG and GO, also KEGG, InterPro, PFAM, eggnog and operon classes are supported. As classification data for features is often not available, we offer fast annotation and classification of proteins in any newly sequenced bacterial genome. The web server FUNAGE-Pro enables fast functional analysis on single gene sets, multiple experiments, time series data, clusters, and gene network modules for any prokaryote species or strain. FUNAGE-Pro is freely available at http://funagepro.molgenrug.nl.


Assuntos
Computadores , Redes Reguladoras de Genes , Genes Bacterianos , Internet , Células Procarióticas , Software , Células Procarióticas/classificação , Células Procarióticas/metabolismo , Proteômica , Genoma Bacteriano/genética , Proteínas de Bactérias/genética , Anotação de Sequência Molecular , Fatores de Tempo , Família Multigênica
4.
Appl Environ Microbiol ; 88(9): e0247621, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35416684

RESUMO

Whole-genome transcriptional analyses performed on microorganisms are traditionally based on a small number of samples. To map transient expression variations, and thoroughly characterize gene expression throughout the growth curve of the widely used model organism Lactococcus lactis MG1363, gene expression data were collected with unprecedented time resolution. The resulting gene expression patterns were globally analyzed in several different ways to demonstrate the richness of the data and the ease with which novel phenomena can be discovered. When the culture moves from one growth phase to another, gene expression patterns change to such an extent that we suggest that those patterns can be used to unequivocally distinguish growth phases from each other. Also, within the classically defined growth phases, subgrowth phases were distinguishable with a distinct expression signature. Apart from the global expression pattern shifts seen throughout the growth curve, several cases of short-lived transient gene expression patterns were clearly observed. These could help explain the gene expression variations frequently observed in biological replicates. A method was devised to estimate a measure of unnormalized/absolute gene expression levels and used to determine how global transcription patterns are influenced by nutrient starvation or acidification of the medium. Notably, we inferred that L. lactis MG1363 produces proteins with on average lower pIs and lower molecular weights as the medium acidifies and nutrients get scarcer. IMPORTANCE This data set is a rich resource for microbiologists interested in common mechanisms of gene expression, regulation and in particular the physiology of L. lactis. Thus, similar to the common use of genome sequence data by the scientific community, the data set constitutes an extensive data repository for mining and an opportunity for bioinformaticians to develop novel tools for in-depth analysis.


Assuntos
Lactococcus lactis , Adaptação Fisiológica , Concentração de Íons de Hidrogênio , Lactococcus lactis/metabolismo , Nutrientes , Transcriptoma
5.
Food Res Int ; 151: 110867, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980402

RESUMO

This work investigated the effects of different chemical structures of human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) on pathogen adhesion by serving as decoy receptors. Pre-exposure of pathogens to inulins and low degree of methylation (DM) pectin prevented binding to gut epithelial Caco2-cells, but effects were dependent on the molecules' chemistry, pathogen strain and growth phase. Pre-exposure to 3-fucosyllactose increased E. coli WA321 adhesion (28%, p < 0.05), and DM69 pectin increased E. coli ET8 (15 fold, p < 0.05) and E. coli WA321 (50%, p < 0.05) adhesion. Transcriptomics analysis revealed that DM69 pectin upregulated flagella and cell membrane associated genes. However, the top 10 downregulated genes were associated with lowering of bacteria virulence. DM69 pectin increased pathogen adhesion but bacterial virulence was attenuated illustrating different mechanisms may lower pathogen adhesion. Our study illustrates that both hMOs and NDCs can reduce adhesion or attenuate virulence of pathogens but that these effects are chemistry dependent.


Assuntos
Escherichia coli , Leite Humano , Células CACO-2 , Células Epiteliais , Humanos , Oligossacarídeos , Virulência
6.
Appl Environ Microbiol ; 88(4): e0176421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936833

RESUMO

Previous RNA sequencing has allowed the identification of 129 long 5' untranslated regions (UTRs) in the Lactococcus lactis MG1363 transcriptome. These sequences potentially harbor cis-acting riboswitches. One of the identified extended 5' UTRs is a putative thiamine pyrophosphate (TPP) riboswitch. It is located immediately upstream of the thiamine transporter gene thiT (llmg_0334). To confirm this assumption, the 5'-UTR sequence was placed upstream of the gene encoding the superfolder green fluorescent protein (sfGFP), sfgfp, allowing the examination of the expression of sfGFP in the presence or absence of thiamine in the medium. The results show that this sequence indeed represents a thiamine-responsive TPP riboswitch. This RNA-based genetic control device was used to successfully restore the mutant phenotype of an L. lactis strain lacking the major autolysin gene, acmA. The L. lactis thiT TPP riboswitch (RSthiT) is a useful molecular genetic tool enabling the gradual downregulation of the expression of genes under its control by adjusting the thiamine concentration. IMPORTANCE The capacity of microbes with biotechnological importance to adapt to and survive under quickly changing industrial conditions depends on their ability to adequately control gene expression. Riboswitches are important RNA-based elements involved in rapid and precise gene regulation. Here, we present the identification of a natural thiamine-responsive riboswitch of Lactococcus lactis, a bacterium used worldwide in the production of dairy products. We used it to restore a genetic defect in an L. lactis mutant and show that it is a valuable addition to the ever-expanding L. lactis genetic toolbox.


Assuntos
Lactococcus lactis , Riboswitch , Proteínas de Fluorescência Verde/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Riboswitch/genética , Tiamina/metabolismo , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo
7.
J Appl Clin Med Phys ; 22(8): 45-59, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34275176

RESUMO

PURPOSE: To develop and implement an acceptance procedure for the new Elekta Unity 1.5 T MRI-linac. METHODS: Tests were adopted and, where necessary adapted, from AAPM TG106 and TG142, IEC 60976 and NCS 9 and NCS 22 guidelines. Adaptations were necessary because of the atypical maximum field size (57.4 × 22 cm), FFF beam, the non-rotating collimator, the absence of a light field, the presence of the 1.5 T magnetic field, restricted access to equipment within the bore, fixed vertical and lateral table position, and the need for MR image to MV treatment alignment. The performance specifications were set for stereotactic body radiotherapy (SBRT). RESULTS: The new procedure was performed similarly to that of a conventional kilovoltage x-ray (kV) image guided radiation therapy (IGRT) linac. Results were acquired for the first Unity system. CONCLUSIONS: A comprehensive set of tests was developed, described and implemented for the MRI-linac. The MRI-linac met safety requirements for patients and operators. The system delivered radiation very accurately with, for example a gantry rotation locus of isocenter of radius 0.38 mm and an average MLC absolute positional error of 0.29 mm, consistent with use for SBRT. Specifications for clinical introduction were met.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Humanos , Imageamento por Ressonância Magnética , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica
8.
Biosci Microbiota Food Health ; 40(1): 33-42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33520567

RESUMO

Lactobacillus acidophilus surface layer proteins (SLPs) self-assemble into a monolayer that is non-covalently bound to the outer surface of the cells. There they are in direct contact with the environment, environmental stressors and gut components of the host in which the organism resides. The role of L. acidophilus SLPs is not entirely understood, although SLPs seem to be essential for bacterial growth. We constructed three L. acidophilus L-92 strains, each expressing a mutant of the most abundant SLP, SlpA. Each carried a 12-amino acid c-myc epitope substitution at a different position in the protein. A strain was also obtained that expressed the SlpA paralog SlpB from an originally silent slpB gene. All four strains behaved differently with respect to growth under various stress conditions, such as the presence of salt, ox gall or ethanol, suggesting that SlpA affects stress tolerance in L. acidophilus L-92. Also, the four mutants showed differential in vitro binding ability to human host cell proteins such as uromodulin or dendritic cell (DC)-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). Furthermore, co-culture of murine immature DCs with a mutant strain expressing one of the recombinant SlpA proteins changed the concentrations of the cytokines IL-10 and IL-12. Our data suggest that SlpA and SlpB of L. acidophilus participate in bacterial stress tolerance and binding to uromodulin or DC-SIGN, possibly leading to effective immune-modification.

9.
Mater Sci Eng C Mater Biol Appl ; 119: 111578, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321624

RESUMO

Multi-drug resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause nosocomial infections that can have deleterious effects on human health. Thus, it is imperative to find solutions to treat these detrimental infections as well as to control their spread. We tested the effect of two different antimicrobial materials, functionalised graphene oxide (GOX), and AGXX® coated on cellulose fibres, on the growth and transcriptome of the clinical MRSA strain S. aureus 04-02981. In addition, we investigated the effect of a third material as a combination of GOX and AGXX® fibres on S. aureus 04-02981. Standard plate count assay revealed that the combination of fibres, GOX-AGXX® inhibited the growth of S. aureus 04-02981 by 99.98%. To assess the effect of these antimicrobials on the transcriptome of our strain, cultures of S. aureus 04-02981 were incubated with GOX, AGXX®, or GOX-AGXX® fibres for different time periods and then subjected to RNA-sequencing. Uncoated cellulose fibres were used as a negative control. The antimicrobial fibres had a huge impact on the transcriptome of S. aureus 04-02981 affecting the expression of 2650 genes. Primarily genes related to biofilm formation and virulence (such as agr, sarA, and those of the two-component system SaeRS), and genes crucial for survival in biofilms (like arginine metabolism arc genes) were repressed. In contrast, the expression of siderophore biosynthesis genes (sbn) was induced, a probable response to stress imposed by the antimicrobials and the conditions of iron-deficiency. Genes associated with potassium transport, intracellular survival and pathogenesis (kdp) were also differentially expressed. Our data suggest that the combination of GOX and AGXX® acts as an efficient antimicrobial against S. aureus 04-02981. Thus, these materials are potential candidates for applications in antimicrobial surface coatings.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Biofilmes , Humanos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus , Transcriptoma
11.
PLoS One ; 15(9): e0238988, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925946

RESUMO

Lactococcus lactis is a lactic acid bacterium widely used as a starter culture in the manufacture of dairy products, especially a wide variety of cheeses. Improved industrial strains would help to manufacture better food products that can meet the industry's and consumer's demands with respect to e.g. quality, taste, texture and shelf life. Bacteriophage infection of L. lactis starter cultures represents one of the main causes of fermentation failure and consequent economic losses for the dairy industry. In this study, however, we aim at employing bacteriophages for beneficial purposes. We developed an experimental setup to assess whether phage-mediated horizontal gene transfer could be used to enhance the genetic characteristics of L. lactis strains in accordance with the European law regarding the use of genetically modified organisms (GMOs) in the food industry. Although we could not show the transfer of chromosomal DNA we did successfully transduce two dissimilar plasmids from L. lactis strain MG1363 to one of its derivatives employing three different lactococcal bacteriophages.


Assuntos
Bacteriófagos/genética , Microbiologia de Alimentos/métodos , Lactococcus lactis/genética , Queijo/microbiologia , Laticínios/microbiologia , Técnicas de Transferência de Genes , Plasmídeos/genética
12.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32680863

RESUMO

Large-scale mass spectrometry-based peptidomics for bioactive-peptide discovery is relatively unexplored because of challenges in intracellular peptide extraction and small-peptide identification. Here, we present an analytical pipeline for large-scale intracellular peptidomics of Lactococcus lactis It entails an optimized sample preparation protocol for L. lactis, used as an "enzyme complex" to digest ß-casein, an extraction method for its intracellular peptidome, and a peptidomics data analysis and visualization procedure. In addition, we proofread the publicly available bioactive-peptide databases and obtained an optimized database of bioactive peptides derivable from bovine ß-casein. We used the pipeline to examine cultures of L. lactis MG1363 and a set of 6 isogenic multiple peptidase mutants incubated with ß-casein. We observed a clearly strain-dependent accumulation of peptides with several bioactivities, such as angiotensin-converting enzyme (ACE)-inhibitory, dipeptidyl peptidase 4 (DPP-IV)-inhibitory, and immunoregulatory functions. The results suggest that both the number of different bioactive peptides and the bioactivity diversity can be increased by editing the proteolytic system of L. lactis This comprehensive pipeline offers a model for discovery of bioactive peptides in combination with other proteins and might be applicable to other bacteria.IMPORTANCE Lactic acid bacteria (LAB) are very important for the production of safe and healthy human and animal fermented foods and feed and, increasingly more, in the functional food industry. The intracellular peptidomes of LAB are promising reservoirs of bioactive peptides. We show here that targeted genetic engineering of the peptide degradation pathway allows steering the composition of the peptide pool of the LAB Lactococcus lactis and production of peptides with interesting bioactivities. Our work could be used as a guideline for modifying proteolytic systems in other LAB to further explore their potential as cell peptide factories.


Assuntos
Lactococcus lactis/metabolismo , Engenharia Metabólica , Peptídeos/química , Proteoma , Caseínas/química , Proteólise
13.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32532874

RESUMO

Lactococcus lactis is a Gram-positive bacterium that is widely used as a cell factory for the expression of heterologous proteins that are relevant in the pharmaceutical and nutraceutical fields. The signal peptide of the major secreted protein of L. lactis, Usp45, has been employed extensively in engineering strategies to secrete proteins of interest. However, the biological function of Usp45 has remained obscure despite more than 25 years of research. Studies on Usp45 homologs in other Gram-positive bacteria suggest that Usp45 may play a role in cell wall turnover processes. Here, we show the effect of inactivation and overexpression of the usp45 gene on L. lactis growth, phenotype, and cell division. Our results are in agreement with those obtained in streptococci and demonstrate that the L. lactis Usp45 protein is essential for proper cell division. We also show that the usp45 promoter is highly activated by galactose. Overall, our results indicate that Usp45 mediates cell separation, probably by acting as a peptidoglycan hydrolase.IMPORTANCE The cell wall, composed mainly of peptidoglycan, is key to maintaining the cell shape and protecting the cell from bursting. Peptidoglycan degradation by peptidoglycan hydrolysis and autolysins occurs during growth and cell division. Since peptidoglycan hydrolases are important for virulence, envelope integrity, and regulation of cell division, it is valuable to investigate their function and regulation. Notably, PcsB-like proteins such as Usp45 have been proposed as new targets for antimicrobial drugs and could also be target for the development of food-grade suicide systems. In addition, although various other expression and secretion systems have been developed for use in Lactococcus lactis, the most-used signal peptide for protein secretion in this bacterium is that of the Usp45 protein. Thus, elucidating the biological function of Usp45 and determining the factors affecting its expression would contribute to optimize several applications.


Assuntos
Proteínas de Bactérias/genética , Divisão Celular/fisiologia , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Lactococcus lactis/genética , Proteínas de Bactérias/metabolismo , Lactococcus lactis/metabolismo , Regiões Promotoras Genéticas
14.
Microbiol Resour Announc ; 9(16)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299876

RESUMO

Three Lactococcus lactis strains with the ability to secrete various amino acids (leucine, isoleucine, methionine, valine, glutamic acid, and histidine) were sequenced in order to identify the mechanisms involved in the secretion. Amino acids contribute to flavor formation; therefore, bacterial strains with this ability are relevant for the food industry.

15.
Microbiol Resour Announc ; 9(12)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193244

RESUMO

Lactococcus lactis is a Gram-positive lactic acid bacterium commonly used in the dairy industry for the production of fermented foods such as buttermilk and a wide variety of cheeses. Here, we report the complete genome sequences of 28 bacteriophages infecting different L. lactis industrial starter strains isolated from dairy plants throughout the world.

16.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32005740

RESUMO

Lactococcus lactis subsp. cremoris MG1363 is a model for the lactic acid bacteria (LAB) used in the dairy industry. The proteolytic system, consisting of a proteinase, several peptide and amino acid uptake systems, and a host of intracellular peptidases, plays a vital role in nitrogen metabolism and is of eminent importance for flavor formation in dairy products. The dipeptidase PepV functions in the last stages of proteolysis. A link between nitrogen metabolism and peptidoglycan (PG) biosynthesis was underlined by the finding that deletion of the dipeptidase gene pepV (creating strain MGΔpepV) resulted in a prolonged lag phase when the mutant strain was grown with a high concentration of glycine. In addition, most MGΔpepV cells lyse and have serious defects in their shape. This phenotype is due to a shortage of alanine, since adding alanine can rescue the growth and shape defects. Strain MGΔpepV is more resistant to vancomycin, an antibiotic targeting peptidoglycan d-Ala-d-Ala ends, which confirmed that MGΔpepV has an abnormal PG composition. A mutant of MGΔpepV was obtained in which growth inhibition and cell shape defects were alleviated. Genome sequencing showed that this mutant has a single point mutation in the codY gene, resulting in an arginine residue at position 218 in the DNA-binding motif of CodY being replaced by a cysteine residue. Thus, this strain was named MGΔpepVcodYR218C Transcriptome sequencing (RNA-seq) data revealed a dramatic derepression in peptide uptake and amino acid utilization in MGΔpepVcodYR218C A model of the connections among PepV activity, CodY regulation, and PG synthesis of L. lactis is proposed.IMPORTANCE Precise control of peptidoglycan synthesis is essential in Gram-positive bacteria for maintaining cell shape and integrity as well as resisting stresses. Although neither the dipeptidase PepV nor alanine is essential for L. lactis MG1363, adequate availability of either ensures proper cell wall synthesis. We broaden the knowledge about the dipeptidase PepV, which acts as a linker between nitrogen metabolism and cell wall synthesis in L. lactis.


Assuntos
Proteínas de Bactérias/genética , Dipeptidases/genética , Lactococcus/genética , Mutação , Proteínas de Bactérias/metabolismo , Dipeptidases/metabolismo , Genes Bacterianos , Pleiotropia Genética , Lactococcus/metabolismo
17.
Sci Rep ; 9(1): 16881, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727936

RESUMO

Enterococcus faecalis is a lactic acid bacterium characterized by its tolerance of very diverse environmental conditions, a property that allows it to colonize many different habitats. This species can be found in food products, especially in fermented foods where it plays an important role as a biopreservative and influences the development of organoleptic characteristics. However, E. faecalis also produces the biogenic amines tyramine and putrescine. The consumption of food with high concentrations of these compounds can cause health problems. The present work reports the construction, via homologous recombination, of a double mutant of E. faecalis in which the clusters involved in tyramine and putrescine synthesis (which are located in different regions of the chromosome) are no longer present. Analyses showed the double mutant to grow and adhere to intestinal cells normally, and that the elimination of genes involved in the production of tyramine and putrescine has no effect on the expression of other genes.


Assuntos
Biofilmes/crescimento & desenvolvimento , Enterococcus faecalis/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Aderência Bacteriana , Células CACO-2 , Cromossomos Bacterianos/química , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/metabolismo , Microbiologia de Alimentos , Engenharia Genética/métodos , Recombinação Homóloga , Humanos , Concentração de Íons de Hidrogênio , Putrescina/biossíntese , Transcriptoma , Tiramina/biossíntese
18.
Phys Med Biol ; 64(18): 185004, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31370043

RESUMO

The lack of radiation-attenuating tuning capacitors in high impedance coils (HICs) make HICs an interesting building block of receive arrays for MRI-guided radiotherapy (MRIgRT). Additionally, their flexibility and limited channel coupling allow for low-density support materials, which are likely to be more radiation transparent (radiolucent). In this work, we introduce the use of HICs in receive arrays for MRIgRT treatments. We discuss the design and show the dosimetric feasibility of a HIC receive array that has a high channel count and aims to improve the imaging performance of the 1.5 T MR-linac. Our on-body design comprises an anterior and posterior element, which each feature a [Formula: see text] channel layout (32 channels total). The anterior element is flexible, while the posterior element is rigid to support the patient. Mockups consisting of support materials and conductors were built, irradiated, and optimized to minimize impact on the surface dose (7% of the dose maximum) and dose at depth ([Formula: see text]0.8% under a single conductor and [Formula: see text]1.4% under a conductor crossing). Anatomical motion and the use of multiple beam angles will ensure that these slight dose changes at depth are clinically insignificant. Subsequently, several functional, single-channel HIC imaging prototypes and a 5-channel array were built to assess the performance in terms of signal-to-noise ratio (SNR). The performance was compared to the clinical MR-linac array and showed that the 5-channel imaging prototype outperformed the clinical array in terms of SNR and channel coupling. Imaging performance was not affected by the radiation beam. In conclusion, the use of HICs allowed for the design of our flexible, on-body receive array for MRIgRT. The design was shown to be dosimetrically feasible and improved the SNR. Future research with a full array will need to show the gain in parallel imaging performance and thus acceleration.


Assuntos
Desenho de Equipamento , Imageamento por Ressonância Magnética/instrumentação , Fenômenos Mecânicos , Aceleradores de Partículas/instrumentação , Impedância Elétrica , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
19.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31350317

RESUMO

Lactococcus lactis is a Gram-positive bacterium widely used as a starter culture for the production of different dairy products, especially a large variety of cheeses. Infection of lactococcal starter cultures by bacteriophages is one of the major causes of fermentation failure and often leads to production halt. Lactococcal bacteriophages belonging to the c2, 936, and P335 species are the most commonly isolated in dairy plants and have been extensively investigated in the past three decades. Information regarding bacteriophages belonging to less commonly isolated species is, on the other hand, less extensive, although these phages can also contribute to starter culture infection. Here, we report the nucleotide sequence of the newly isolated L. lactis phage CHPC971, belonging to the rare 1706 species of lactococcal phages. We investigated the nature of the host receptor recognized by the phage and collected evidence that strongly suggests that it binds to a specific sugar moiety in the cell wall pellicle of its host. An in silico analysis of the genome of phage CHPC971 identified the hypothetical genes involved in receptor binding.IMPORTANCE Gathering information on how lactococcal bacteriophages recognize their host and proliferate in the dairy environment is of vital importance for the establishment of proper starter culture rotation plans and to avoid fermentation failure and consequent great economic losses for dairy industries. We provide strong evidence on the type of receptor recognized by a newly isolated 1706-type lactococcal bacteriophage, increasing knowledge of phage-host interactions relevant to dairying. This information can help to prevent phage infection events that, so far, are hard to predict and avoid.


Assuntos
Bacteriófagos/genética , Parede Celular/química , Interações entre Hospedeiro e Microrganismos , Lactococcus lactis/química , Lactococcus lactis/virologia , Açúcares/química , Bacteriófagos/isolamento & purificação , Sequência de Bases , Laticínios , Fermentação , Genoma Viral , Ligação Proteica , Receptores Virais/genética
20.
PLoS One ; 14(7): e0220048, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31344087

RESUMO

Microbial surface properties are important for interactions with the environment in which cells reside. Surface properties of lactic acid bacteria significantly vary and some strains can form strong emulsions when mixed with a hydrocarbon. Lactococcus lactis NCDO712 forms oil-in-water emulsions upon mixing of a cell suspension with petroleum. In the emulsion the bacteria locate at the oil-water interphase which is consistent with Pickering stabilization. Cells of strain NCDO712 mixed with sunflower seed oil did not stabilize the oil droplets. This study shows that the addition of either ethanol or ammonium sulfate led to cell aggregation, which subsequently allowed stabilizing oil-in-water emulsions. From this, we conclude that bacterial cell aggregation is important for emulsion droplet stabilization. To determine how bacterial emulsification influences the microbial transcriptome RNAseq analysis was performed on lactococci taken from the oil-water interphase. In comparison to cells in suspension 72 genes were significantly differentially expressed with a more than 4-fold difference. The majority of these genes encode proteins involved in transport processes and the metabolism of amino acids, carbohydrates and ions. Especially the proportion of genes belonging to the CodY regulon was high. Our results also point out that in a complex environment such as food fermentations a heterogeneous response of microbes might be caused by microbe-matrix interactions. In addition, microdroplet technologies are increasingly used in research. The understanding of interactions between bacterial cells and oil-water interphases is of importance for conducting and interpreting such experiments.


Assuntos
Emulsões/química , Lactococcus lactis/química , Lactococcus lactis/genética , Bactérias/química , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Regulação Bacteriana da Expressão Gênica , Óleos/química , Propriedades de Superfície , Transcrição Gênica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA