Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Commun ; 6(3): fcae170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846537

RESUMO

Friedreich's ataxia is a neurodegenerative disorder caused by reduced frataxin levels. It leads to motor and sensory impairments and has a median life expectancy of around 35 years. As the most common inherited form of ataxia, Friedreich's ataxia lacks reliable, non-invasive biomarkers, prolonging and inflating the cost of clinical trials. This study proposes TUG1, a long non-coding RNA, as a promising blood-based biomarker for Friedreich's ataxia, which is known to regulate various cellular processes. In a previous study using a frataxin knockdown mouse model, we observed several hallmark Friedreich's ataxia symptoms. Building on this, we hypothesized that a dual-source approach-comparing the data from peripheral blood samples from Friedreich's ataxia patients with tissue samples from affected areas in Friedreich's ataxia knockdown mice, tissues usually unattainable from patients-would effectively identify robust biomarkers. A comprehensive reanalysis was conducted on gene expression data from 183 age- and sex-matched peripheral blood samples of Friedreich's ataxia patients, carriers and controls and 192 tissue data sets from Friedreich's ataxia knockdown mice. Blood and tissue samples underwent RNA isolation and quantitative reverse transcription polymerase chain reaction, and frataxin knockdown was confirmed through enzyme-linked immunosorbent assays. Tug1 RNA interaction was explored via RNA pull-down assays. Validation was performed in serum samples on an independent set of 45 controls and 45 Friedreich's ataxia patients and in blood samples from 66 heterozygous carriers and 72 Friedreich's ataxia patients. Tug1 and Slc40a1 emerged as potential blood-based biomarkers, confirmed in the Friedreich's ataxia knockdown mouse model (one-way ANOVA, P ≤ 0.05). Tug1 was consistently downregulated after Fxn knockdown and correlated strongly with Fxn levels (R 2 = 0.71 during depletion, R 2 = 0.74 during rescue). Slc40a1 showed a similar but tissue-specific pattern. Further validation of Tug1's downstream targets strengthened its biomarker candidacy. In additional human samples, TUG1 levels were significantly downregulated in both whole blood and serum of Friedreich's ataxia patients compared with controls (Wilcoxon signed-rank test, P < 0.05). Regression analyses revealed a negative correlation between TUG1 fold-change and disease onset (P < 0.0037) and positive correlations with disease duration and functional disability stage score (P < 0.04). This suggests that elevated TUG1 levels correlate with earlier onset and more severe cases. This study identifies TUG1 as a potential blood-based biomarker for Friedreich's ataxia, showing consistent expression variance in human and mouse tissues related to disease severity and key Friedreich's ataxia pathways. It correlates with frataxin levels, indicating its promise as an early, non-invasive marker. TUG1 holds potential for Friedreich's ataxia monitoring and therapeutic development, meriting additional research.

2.
Sci Rep ; 12(1): 3344, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228612

RESUMO

Incomplete functional recovery after peripheral nerve injury (PNI) often results in devastating physical disabilities in human patients. Despite improved progress in surgical and non-surgical approaches, achieving complete functional recovery following PNI remains a challenge. This study demonstrates that phentolamine may hold a significant promise in treating nerve injuries and denervation induced muscle atrophy following PNI. In a sciatic nerve crush injury mouse model, we found that phentolamine treatment enhanced motor and functional recovery, protected axon myelination, and attenuated injury-induced muscle atrophy in mice at 14 days post-injury (dpi) compared to saline treatment. In the soleus of phentolamine treated animals, we observed the downregulation of phosphorylated signal transducer and activator of transcription factor 3 (p-STAT3) as well as muscle atrophy-related genes Myogenin, muscle ring finger 1 (MuRF-1), and Forkhead box O proteins (FoxO1, FoxO3). Our results show that both nerve and muscle recovery are integral components of phentolamine treatment-induced global functional recovery in mice at 14 dpi. Moreover, phentolamine treatment improved locomotor functional recovery in the mice after spinal cord crush (SCC) injury. The fact that phentolamine is an FDA approved non-selective alpha-adrenergic blocker, clinically prescribed for oral anesthesia reversal, hypertension, and erectile dysfunction makes this drug a promising candidate for repurposing in restoring behavioral recovery following PNI and SCC injuries, axonal neuropathy, and muscle wasting disorders.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Animais , Axônios/metabolismo , Humanos , Masculino , Camundongos , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Regeneração Nervosa , Fentolamina/uso terapêutico , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/lesões
3.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34907015

RESUMO

The positive impact of meditation on human well-being is well documented, yet its molecular mechanisms are incompletely understood. We applied a comprehensive systems biology approach starting with whole-blood gene expression profiling combined with multilevel bioinformatic analyses to characterize the coexpression, transcriptional, and protein-protein interaction networks to identify a meditation-specific core network after an advanced 8-d Inner Engineering retreat program. We found the response to oxidative stress, detoxification, and cell cycle regulation pathways were down-regulated after meditation. Strikingly, 220 genes directly associated with immune response, including 68 genes related to interferon signaling, were up-regulated, with no significant expression changes in the inflammatory genes. This robust meditation-specific immune response network is significantly dysregulated in multiple sclerosis and severe COVID-19 patients. The work provides a foundation for understanding the effect of meditation and suggests that meditation as a behavioral intervention can voluntarily and nonpharmacologically improve the immune response for treating various conditions associated with excessive or persistent inflammation with a dampened immune system profile.


Assuntos
Sistema Imunitário/metabolismo , Meditação , Transcriptoma , Adulto , COVID-19/imunologia , COVID-19/metabolismo , Dieta Vegana , Feminino , Genoma Humano , Humanos , Masculino , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA