RESUMO
A study on voltammetric analysis of blood serum diluted in a phosphate buffer is presented using advanced square-wave voltammetry at an edge plane pyrolytic graphite electrode. The results demonstrate that even in a complex medium like human blood serum, electrochemical characterization can be achieved through the use of advanced voltammetric techniques in conjunction with an appropriate commercially available electrode, such as the edge plane pyrolytic graphite electrode, which boosts superior electrocatalytic properties. Without undergoing any chemical treatment of the serum sample, the square-wave voltammetry technique reveals, for the first time, the electrode reactions of uric acid, bilirubin, and albumin in a single experiment, as represented by well-defined, separated, and intense voltammetric signals. All electrode processes are surface-confined, indicating that the edge plane sites of the electrode serve as an ideal platform for the competitive adsorption of electroactive species, despite the extensive chemical complexity of the serum samples. The speed and differential nature of square-wave voltammetry are crucial for obtaining an outstanding resolution of the voltammetric peaks, maintaining the quasi-reversible nature of the underlying electrode processes, while reducing the impact of follow-up chemical reactions that are coupled to the initial electron transfer for all three detected species, and minimizing fouling of the electrode surface.
Assuntos
Grafite , Humanos , Grafite/química , Soro , Transporte de Elétrons , Indicadores e Reagentes , EletrodosRESUMO
Coenzyme Q-0 (CoQ-0) is the only Coenzyme Q lacking an isoprenoid group on the quinoid ring, a feature important for its physico-chemical properties. Here, the redox behavior of CoQ-0 in buffered and non-buffered aqueous media was examined. In buffered aqueous media CoQ-0 redox chemistry can be described by a 2-electron-2-proton redox scheme, characteristic for all benzoquinones. In non-buffered media the number of electrons involved in the electrode reaction of CoQ-0 is still 2; however, the number of protons involved varies between 0 and 2. This results in two additional voltammetric signals, attributed to 2-electrons-1H(+) and 2-electrons-0H(+) redox processes, in which mono- and di-anionic compounds of CoQ-0 are formed. In addition, CoQ-0 exhibits a complex chemistry in strong alkaline environment. The reaction of CoQ-0 and OH(-) anions generates several hydroxyl derivatives as products. Their structures were identified with HPLC/MS. The prevailing radical reaction mechanism was analyzed by electron paramagnetic resonance spectroscopy. The hydroxyl derivatives of CoQ-0 have a strong antioxidative potential and form stable complexes with Ca(2+) ions. In summary, our results allow mechanistic insights into the redox properties of CoQ-0 and its hydroxylated derivatives and provide hints on possible applications.