Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
Front Immunol ; 12: 669891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079551

RESUMO

Our immune system has evolved as a complex network of cells and tissues tasked with maintaining host homeostasis. This is evident during the inflammatory responses elicited during a microbial infection or traumatic tissue damage. These responses seek to eliminate foreign material or restore tissue integrity. Even during periods without explicit disturbances, the immune system plays prominent roles in tissue homeostasis. Perhaps one of the most studied cells in this regard is the macrophage. Tissue-resident macrophages are a heterogenous group of sensory cells that respond to a variety of environmental cues and are essential for organ function. Endogenously produced glucocorticoid hormones connect external environmental stress signals with the function of many cell types, producing profound changes in immune cells, including macrophages. Here, we review the current literature which demonstrates specific effects of glucocorticoids in several organ systems. We propose that tissue-resident macrophages, through glucocorticoid signaling, may play an underappreciated role as regulators of organ homeostasis.


Assuntos
Glucocorticoides/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Receptores de Glucocorticoides/metabolismo , Regeneração , Animais , Fibrose , Homeostase , Humanos , Inflamação/imunologia , Inflamação/patologia , Ligantes , Macrófagos/imunologia , Transdução de Sinais , Cicatrização
4.
Cell Death Differ ; 27(1): 71-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31076632

RESUMO

Genome-wide association studies (GWAS) have identified Optineurin (OPTN) as genetically linked to Paget's disease of the bone (PDB), a chronic debilitating bone remodeling disorder characterized by localized areas of increased bone resorption and abnormal bone remodeling. However, only ~10% of mouse models with a mutation in Optn develop PDB, thus hindering the mechanistic understanding of the OPTN-PDB axis. Here, we reveal that 100% of aged Optn global knockout (Optn-/-) mice recapitulate the key clinical features observed in PDB patients, including polyostotic osteolytic lesions, mixed-phase lesions, and increased serum levels of alkaline phosphatase (ALP). Differentiation of primary osteoclasts ex vivo revealed that the absence of Optn resulted in an increased osteoclastogenesis. Mechanistically, Optn-deficient osteoclasts displayed a significantly decreased type I interferon (IFN) signature, resulting from both defective production of IFNß and impaired signaling via the IFNα/ßR, which acts as a negative feedback loop for osteoclastogenesis and survival. These data highlight the dual roles of OPTN in the type I IFN response to restrain osteoclast activation and bone resorption, offering a novel therapeutic target for PDB. Therefore, our study describes a novel and essential mouse model for PDB and define a key role for OPTN in osteoclast differentiation.


Assuntos
Remodelação Óssea , Proteínas de Ciclo Celular/fisiologia , Interferon Tipo I/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Osteíte Deformante/genética , Osteoclastos/citologia , Animais , Medula Óssea/metabolismo , Osso e Ossos/diagnóstico por imagem , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animais de Doenças , Feminino , Interferon Tipo I/biossíntese , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteíte Deformante/diagnóstico por imagem , Osteíte Deformante/patologia , Osteoclastos/metabolismo , Osteogênese , Receptores de Interferon/metabolismo , Transdução de Sinais
5.
Immunity ; 50(1): 64-76.e4, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635240

RESUMO

As long-lived post-mitotic cells, neurons employ unique strategies to resist pathogen infection while preserving cellular function. Here, using a murine model of Zika virus (ZIKV) infection, we identified an innate immune pathway that restricts ZIKV replication in neurons and is required for survival upon ZIKV infection of the central nervous system (CNS). We found that neuronal ZIKV infection activated the nucleotide sensor ZBP1 and the kinases RIPK1 and RIPK3, core components of virus-induced necroptotic cell death signaling. However, activation of this pathway in ZIKV-infected neurons did not induce cell death. Rather, RIPK signaling restricted viral replication by altering cellular metabolism via upregulation of the enzyme IRG1 and production of the metabolite itaconate. Itaconate inhibited the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes. These findings demonstrate an immunometabolic mechanism of viral restriction during neuroinvasive infection.


Assuntos
Glicoproteínas/metabolismo , Hidroliases/metabolismo , Neurônios/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Infecção por Zika virus/imunologia , Zika virus/fisiologia , Animais , Morte Celular , Células Cultivadas , Modelos Animais de Doenças , Glicoproteínas/genética , Humanos , Hidroliases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroproteção , RNA Viral/imunologia , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Succinato Desidrogenase/metabolismo , Succinatos/metabolismo , Replicação Viral
6.
Trends Immunol ; 38(10): 705-718, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28734635

RESUMO

The life of an organism requires the assistance of an unlikely process: programmed cell death. Both development and the maintenance of homeostasis result in the production of superfluous cells that must eventually be disposed of. Furthermore, programmed cell death can also represent a defense mechanism; for example, by depriving pathogens of a replication niche. The responsibility of handling these dead cells falls on phagocytes of the immune system, which surveil their surroundings for dying or dead cells and efficiently clear them in a quiescent manner. This process, termed efferocytosis, depends on cooperation between the phagocyte and the dying cell. In this review we explore different types of programmed cell death and their impact on innate immune responses.


Assuntos
Apoptose , Imunidade Inata , Inflamação/imunologia , Sistema Fagocitário Mononuclear , Fagócitos/imunologia , Animais , Homeostase , Humanos , Sistema Imunitário , Fagocitose
7.
Proc Natl Acad Sci U S A ; 114(9): E1698-E1706, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193861

RESUMO

Many invasive bacteria establish pathogen-containing vacuoles (PVs) as intracellular niches for microbial growth. Immunity to these infections is dependent on the ability of host cells to recognize PVs as targets for host defense. The delivery of several host defense proteins to PVs is controlled by IFN-inducible guanylate binding proteins (GBPs), which themselves dock to PVs through poorly characterized mechanisms. Here, we demonstrate that GBPs detect the presence of bacterial protein secretion systems as "patterns of pathogenesis" associated with PVs. We report that the delivery of GBP2 to Legionella-containing vacuoles is dependent on the bacterial Dot/Icm secretion system, whereas the delivery of GBP2 to Yersinia-containing vacuoles (YCVs) requires hypersecretion of Yersinia translocon proteins. We show that the presence of bacterial secretion systems directs cytosolic carbohydrate-binding protein Galectin-3 to PVs and that the delivery of GBP1 and GBP2 to Legionella-containing vacuoles or YCVs is substantially diminished in Galectin-3-deficient cells. Our results illustrate that insertion of bacterial secretion systems into PV membranes stimulates Galectin-3-dependent recruitment of antimicrobial GBPs to PVs as part of a coordinated host defense program.


Assuntos
Anti-Infecciosos/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Galectina 3/metabolismo , Vacúolos/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Legionella/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Receptores de Superfície Celular/metabolismo
8.
Immunity ; 44(2): 209-11, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26885850

RESUMO

Phagocytes clear dying cells within an organism to prevent damaging inflammation and autoimmunity. In this issue of Immunity, Luo et al. (2016) describe how "find-me" signals from apoptotic cells induce erythropoietin signaling within macrophages to prime them for efferocytosis.


Assuntos
Eritropoetina/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lisofosfolipídeos/metabolismo , Macrófagos/fisiologia , Receptores da Eritropoetina/metabolismo , Esfingosina/análogos & derivados , Animais , Feminino
9.
Sci Signal ; 7(351): ra108, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25389373

RESUMO

Signaling by Toll-like receptor 4 (TLR4) is mediated by either of two adaptor proteins: myeloid differentiation marker 88 (MyD88) or Toll-interleukin-1 (IL-1) receptor (TIR) domain-containing adaptor inducing interferon-ß (TRIF). Whereas MyD88-mediated signaling leads to proinflammatory responses, TRIF-mediated signaling leads to less toxic immunostimulatory responses that are beneficial in boosting vaccine responses. The hypothesis that monophosphorylated lipid A structures act as TRIF-biased agonists of TLR4 offered a potential mechanism to explain their clinical value as vaccine adjuvants, but studies of TRIF-biased agonists have been contradictory. In experiments with mouse dendritic cells, we found that irrespective of the agonist used, TLR4 functioned as a TRIF-biased signaling system through a mechanism that depended on the autocrine and paracrine effects of type I interferons. The TLR4 agonist synthetic lipid A induced expression of TRIF-dependent genes at lower concentrations than were necessary to induce the expression of genes that depend on MyD88-mediated signaling. Blockade of type I interferon signaling selectively decreased the potency of lipid A (increased the concentration required) in inducing the expression of TRIF-dependent genes, thereby eliminating adaptor bias. These data may explain how high-potency TLR4 agonists can act as clinically useful vaccine adjuvants by selectively activating TRIF-dependent signaling events required for immunostimulation, without or only weakly activating potentially harmful MyD88-dependent inflammatory responses.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Regulação da Expressão Gênica , Interferon Tipo I/metabolismo , Lipídeo A/química , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Citocinas/metabolismo , Células Dendríticas/citologia , Inflamação , Interferon beta/metabolismo , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
10.
Adv Pharmacol ; 66: 81-128, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23433456

RESUMO

The structural core of bacterial lipopolysaccharide, lipid A, has played a role in medicine since the 1890s when William Coley sought to harness its immunostimulatory properties in the form of a crude bacterial extract. Recent decades have brought remarkable clarity to the structure of lipid A and the multicomponent endotoxin receptor system that evolved to detect it. A range of therapeutically useful versions of lipid A now exists, including preparations of detoxified lipid A, synthetic copies of naturally occurring biological intermediates such as lipid IVa, and synthetic mimetics. These agents are finding use as vaccine adjuvants, antagonists and immunostimulants whose structural features have been refined to potentiate efficacy while decreasing the risk of inflammatory side effects.


Assuntos
Sistema Imunitário/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Lipídeo A/análogos & derivados , Receptores de Lipopolissacarídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adjuvantes Imunológicos/efeitos adversos , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/química , Fatores Imunológicos/metabolismo , Lipídeo A/efeitos adversos , Lipídeo A/química , Lipídeo A/farmacologia , Receptores de Lipopolissacarídeos/química , Receptores Imunológicos/agonistas , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Receptores de Interleucina-1/agonistas , Receptores de Interleucina-1/química , Receptores de Interleucina-1/metabolismo , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA