Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 142: 109159, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832746

RESUMO

Miamiensis avidus is a parasitic pathogen that causes scuticociliatosis, a severe and often lethal marine infection that affects marine fishes worldwide, including olive flounder (Paralichthys olivaceus) in Korea. This parasite infects all size groups of flounder year-round, causing recurring mortalities and huge economic losses to the Korean flounder industry each year. However, few efforts have been made to implement effective remedial measures to control this parasite. Therefore, our study sought to develop a chitosan microsphere (MS)-encapsulated inactivated vaccine (IMa + chitosan) for oral delivery (adsorbed in feed) to flounder fingerlings and assess its protective efficacy at different modalities via three in vivo experimental trials. Immunisation trial-1 was conducted to determine the effective concentration of chitosan. Our findings indicated that an IMa + chitosan 0.05 % vaccine formulation was safe and effective in providing moderate protection [46.67%-53.3 % relative percent survival (RPS)] against M. avidus intraperitoneal (IP) injection challenge at two weeks post-vaccination (wpv) compared to the IMa + chitosan 0.01 % and IMa + chitosan 0.005 % vaccines (0%-13.3 % RPS) irrespective of the antigen doses. In trial-2, the IMa + chitosan 0.05 % vaccine elicited similar protective immunity (30.8%-57.1 % RPS) in olive flounder against M. avidus at varying antigen doses (high: 2.38 × 106 cells/fish; low: 1.5 × 105 cells/fish), immunisation periods (2 and 5 wpv), and challenge modes (IP injection and immersion). Furthermore, experimental trial-3 validated the use of chitosan MS as an IMa antigen carrier to improve survivability (41.7 % RPS) in the host by significantly (p < 0.05) upregulating specific anti-M. avidus antibody titres in the fish sera and mucus of the group immunised with IMa-containing chitosan MS. In contrast, non-specific immunomodulatory effects (16.7 % RPS and enhanced mucosal antibody titres) were observed in the group treated with chitosan MS without IMa. Therefore, our findings suggested that oral administration of chitosan MS (0.05 %)-encapsulated IMa vaccine is a promising immunisation strategy against M. avidus that can protect the IMa antigen from digestive degradation, facilitates its targeted delivery to the host immune organs, and helps in orchestrating protective immune induction in olive flounder, thus controlling parasite infection.


Assuntos
Quitosana , Doenças dos Peixes , Linguado , Oligoimenóforos , Parasitos , Animais , Doenças dos Peixes/parasitologia , Microesferas , Vacinas de Produtos Inativados
2.
Microbiol Resour Announc ; 11(12): e0082922, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36445089

RESUMO

We report the full-length genome sequence (compared to reference sequences) of a variant strain of Anguillid herpesvirus 1 (AngHV-1) isolated from imported Anguilla rostrata (American eel) from Canada. This should help to further identify such viruses in the North America.

3.
Fish Shellfish Immunol ; 127: 843-854, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843523

RESUMO

The present study was conducted to assess the protective efficacy of a trivalent oral vaccine containing chitosan-PLGA encapsulated inactivated viral haemorrhagic septicemia virus (VHSV), Streptococcus parauberis serotype I and Miamiensis avidus antigens, followed by its oral (incorporated in feed) administration to olive flounder (Paralichthys olivaceus) fingerlings for a period of 15-consecutive days. After 35 days of initial vaccination, three separate challenge studies were conducted at the optimal temperature of the targeted pathogens using an intraperitoneal injection route. RPS analysis revealed moderate protection in the immunized group against all the three pathogens viz., VHSV (53.30% RPS), S. parauberis serotype-I (33.30% RPS), and M. avidus (66.75% RPS), as compared to the respective non-vaccinated challenge (NVC) control group. In addition, the immunized fish demonstrated significantly (p < 0.05) higher specific antibody titres in serum and significant (p < 0.05) upregulation in the transcript levels of immune genes of Igs (IgM, IgT, pIgR), TLRs (TLR 2, TLR 7), cytokines (IL-1ß, IL-8) and complement pathway (C3) in the mucosal and systemic tissues than those of NVC control fish, suggesting orchestration of pathogen-specific host immune responses thereby favouring its combativeness against the three pathogens. The expression dynamics of IFN-γ, Mx, caspase 3 genes post VHSV challenge; IFN-γ, TLR 2, caspase 1 genes post S. parauberis serotype I challenge and CD-8α, IL-10, TNF-α genes post M. avidus challenge further substantiates the efficacy of the vaccine in stimulating antiviral, antibacterial and antiparasitic immune responses in the host resulting in their better survival. The findings from the present study reflect that the formulated trivalent oral vaccine incorporating VHSV, S. parauberis serotype I and M. avidus antigens can be a promising prophylactic strategy to prevent the associated disease outbreaks in olive flounder.


Assuntos
Quitosana , Doenças dos Peixes , Linguado , Septicemia Hemorrágica Viral , Septicemia Hemorrágica , Novirhabdovirus , Oligoimenóforos , Vacinas Virais , Animais , Doenças dos Peixes/prevenção & controle , Septicemia Hemorrágica Viral/prevenção & controle , Novirhabdovirus/fisiologia , Streptococcus , Receptor 2 Toll-Like
4.
Fish Shellfish Immunol ; 121: 12-22, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34974155

RESUMO

Rock bream iridovirus (RBIV) causes severe mortality in rock bream (Oplegnathus fasciatus) for last two decades. In view of this constant threat of RBIV to the rock bream industry, we conducted the present study with the aim to develop a safe and efficient remedial measure against the virus. In this study, we evaluated the safety and potentiality of squalene, aluminium hydroxide and saponin adjuvants, singly or in combinations, which can be used for developing an efficient inactivated (IV) vaccine to protect rock bream from RBIV infection. The evaluation results demonstrated that saponin (Sa) has the required potential in enacting the antiviral immune response in the host and in providing protection against virus mediated lethality, without causing any adverted side-effects. The study further, showed that a single primary dose of Sa-adjuvanted IV vaccine can confer moderate protections in short (60.04% relative percent mortality (RPS) at 4 wpv) and medium (53.38% RPS at 8 wpv) term post RBIV challenge; whereas, the same vaccine when administered in a prime-boost strategy, it resulted enhanced 93.34% RPS post virus challenge at 4 and 8 wpv. The moderate to high survivability demonstrated by the Sa-adjuvanted IV vaccine, was substantiated by the significant (p < 0.05) upregulation of IL-1ß, Mx and PKR gene transcript. All surviving fish from the Sa-adjuvanted IV vaccine groups were strongly protected from re-infection with RBIV (1.1 × 107) at 70 days post infection (dpi). In conclusion, it can be inferred that, Sa-adjuvanted IV RBIV vaccine can be an efficient control measure to protect the rock bream aquaculture industry against the lethal RBIV virus.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Perciformes , Saponinas , Animais , Infecções por Vírus de DNA/prevenção & controle , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/virologia , Iridovirus , Perciformes/imunologia , Vacinas de Produtos Inativados
5.
Methods Mol Biol ; 2411: 195-204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34816406

RESUMO

Biotechnological advancements have paved newer avenues for developing and designing novel and effective vaccines for rendering protection from various types of infectious diseases. Use of immunogenic genes via plasmid DNA constitutes an important next-generation biotechnological approach to fish immunization. In addition, the use of nanotechnology has significantly addressed the issue of mucosal mode of DNA vaccine delivery in aquaculture. Taking together both these advance technologies, this chapter entails a detailed protocol for the development of a nano-conjugated bicistronic DNA vaccine using chitosan nanoparticles as delivery vehicle, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene of Edwardsiella tarda as antigenic gene and interferon gamma (IFN-γ) gene of Labeo rohita as molecular adjuvant.


Assuntos
Doenças dos Peixes , Vacinas de DNA , Animais , Vacinas Bacterianas/genética , DNA , Infecções por Enterobacteriaceae , Doenças dos Peixes/prevenção & controle , Peixes , Vacinas Conjugadas , Vacinas de DNA/genética
6.
Methods Mol Biol ; 2411: 147-173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34816404

RESUMO

Fish health management has become a critical component of disease control and is invaluable for improved harvests and sustainable aquaculture. Vaccination is generally accepted as the most effective prophylactic measure for fish disease prevention, on environmental, social, and economic grounds. Although the historical approach for developing fish vaccines was based on the principle of Louis Pasteur's "isolate, inactivate and inject," but their weak immunogenicity and low efficacies in many cases, have shifted the focus of fish vaccine development from traditional to next-generation technologies. However, before any fish vaccine can be successfully commercialized, several hurdles need to be overcome regarding the production cost, immunogenicity, effectiveness, mode of administration, environmental safety, and associated regulatory concerns. In this context, the chapter summarises the basic aspects of fish vaccination such as type of vaccine, modalities of vaccine delivery, the immunological basis of fish immunization as well as different challenges associated with the development process and future opportunities.


Assuntos
Doenças dos Peixes , Vacinas , Animais , Aquicultura , Doenças dos Peixes/prevenção & controle , Peixes/imunologia , Vacinação , Desenvolvimento de Vacinas
7.
Front Immunol ; 12: 761130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925332

RESUMO

Olive flounder (Paralichthys olivaceus) is the most valuable aquaculture species in Korea, corresponding to ~60% of its total production. However, infectious diseases often break out among farmed flounders, causing high mortality and substantial economic losses. Although some deleterious pathogens, such as Vibrio spp. and Streptococcus iniae, have been eradicated or contained over the years through vaccination and proper health management, the current disease status of Korean flounder shows that the viral hemorrhagic septicemia virus (VHSV), Streptococcus parauberis, and Miamiensis avidus are causing serious disease problem in recent years. Furthermore, these three pathogens have differing optimal temperature and can attack young fingerlings and mature fish throughout the year-round culture cycle. In this context, we developed a chitosan-poly(lactide-co-glycolide) (PLGA)-encapsulated trivalent vaccine containing formalin-killed VHSV, S. parauberis serotype-I, and M. avidus and administered it to olive flounder fingerlings by immersion route using a prime-boost strategy. At 35 days post-initial vaccination, three separate challenge experiments were conducted via intraperitoneal injection with the three targeted pathogens at their respective optimal temperature. The relative percentages of survival were 66.63%, 53.3%, and 66.75% in the group immunized against VHSV, S. parauberis serotype-I, and M. avidus, respectively, compared to the non-vaccinated challenge (NVC) control group. The immunized fish also demonstrated significantly (p < 0.05) higher specific antibody titers in serum and higher transcript levels of Ig genes in the mucosal and systemic tissues than those of NVC control fish. Furthermore, the study showed significant (p < 0.05) upregulation of various immune genes in the vaccinated fish, suggesting induction of strong protective immune response, ultimately leading to improved survival against the three pathogens. Thus, the formulated mucosal vaccine can be an effective prophylactic measure against VHS, streptococcosis, and scuticociliatosis diseases in olive flounder.


Assuntos
Antígenos Virais/administração & dosagem , Quitosana/administração & dosagem , Infecções por Cilióforos/prevenção & controle , Doenças dos Peixes/prevenção & controle , Septicemia Hemorrágica Viral/prevenção & controle , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Infecções Estreptocócicas/prevenção & controle , Vacinas Virais/administração & dosagem , Animais , Infecções por Cilióforos/veterinária , Complemento C3/genética , Citocinas/genética , Linguado/genética , Linguado/imunologia , Expressão Gênica , Imunoglobulinas/genética , Rim/imunologia , Oligoimenóforos , Baço/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus , Receptores Toll-Like/genética , Resultado do Tratamento
8.
Vaccine ; 39(47): 6866-6875, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34696933

RESUMO

The profitability of the olive flounder (Paralichthys olivaceus) aquaculture industry in Korea depends on high production and maintenance of flesh quality, as consumers prefer to eat raw flounders from aquaria and relish the raw muscles as 'sashimi'. For sustaining high production, easy-to-deliver and efficient vaccination strategies against serious pathogens, such as viral hemorrhagic septicemia virus (VHSV), is very important as it cause considerable losses to the industry. Whereas, a safe and non-invasive vaccine formulation that is free from unacceptable side-effects and does not devalue the fish is needed to maintain flesh quality. We previously developed a squalene-aluminium hydroxide (Sq + Al) adjuvanted VHSV vaccine that conferred moderate to high protection in flounder, without causing any side effects when administered through the intraperitoneal (IP) injection route. However, farmers often demand intramuscular (IM) injection vaccines as they are relatively easy to administer in small fishes. Therefore, we administered the developed vaccine via IP and IM routes and investigated the safety and persistency of the vaccine at the injection site. In addition, we conducted a comparative analysis of vaccine efficacy and serum antibody response. The clinical and histological observation of the IM and IP groups showed that our vaccine remained persistence at the injection sites for 10-17 weeks post vaccination (wpv), without causing any adverse effects to the fish. The relative percentage of survival were 100% and 71.4% for the IP group and 88.9% and 92.3% for the IM group at 3 and 17 wpv, respectively. Thus, considering the persistency period (24 wpv) and both short and long-term efficacy of our vaccine, the present study offers an option to flounder farmers in selecting either IM or IP delivery strategy according to their cultured fish size and harvesting schedule - IM vaccination for small-sized fish and IP vaccination for table-sized fish.


Assuntos
Doenças dos Peixes , Linguado , Septicemia Hemorrágica Viral , Septicemia Hemorrágica , Novirhabdovirus , Vacinas Virais , Hidróxido de Alumínio , Animais , Doenças dos Peixes/prevenção & controle , Septicemia Hemorrágica Viral/prevenção & controle , Injeções Intraperitoneais , Esqualeno , Eficácia de Vacinas
9.
Fish Shellfish Immunol ; 91: 136-147, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31096061

RESUMO

Viral haemorrhagic septicaemia virus (VHSV), a (-) ssRNA virus belonging to the genus Novirhabdovirus of rhabdoviridae family, is the aetiological agent of viral haemorrhagic septicaemia (VHS) disease which causes huge economic losses in farmed olive flounder (Paralichthys olivaceus) and significant mortalities among several other marine fish species in Korea, Japan, and China. Previously, we developed an inactivated vaccine viz., formalin-inactivated VHSV mixed with squalene as adjuvant which was effective in conferring protective immunity (58-76% relative percentage survival) against VHSV but the mode of administration was intraperitoneal injection which is not feasible for small sized fingerling fish. To overcome this limitation, we presently focused on replacing the injection route of vaccine delivery by oral and immersion routes. In this context, we encapsulated the inactivated VHSV vaccine with chitosan nanoparticles (CNPs-IV) by water-in-oil (W/O) emulsification method. After encapsulation, two sets of in vivo vaccination trials were conducted viz., preliminary trial-I and final trial-II. In preliminary trial-I, olive flounder fingerlings (10.5 ±â€¯1.7 g) were vaccinated with CNPs-IV by different delivery strategies involving oral and immersion routes (single/booster dose) followed by challenge with VHSV (1 × 106 TCID50 virus/fish) to evaluate an effective method amongst different applied delivery strategies. Subsequently, a final trial-II was conducted to better understand the immune mechanism behind the efficacy of the employed delivery strategy and also to further improvise the delivery mechanism with prime-boost (primary immersion and oral boosting) combination in order to improve the transient anti-VHSV response in the host. Evaluation of RPS analysis in trial-I revealed higher RPS of 46.7% and 53.3% in the CNPs-IV (immersion) and CNPs-IV (immersion/immersion) groups, respectively compared to 0% RPS in the CNPs-IV (oral) group and 20% RPS in the CNPs-IV (oral/oral) group when calculated against 100% cumulative mortality percentage in the NVC (non-vaccinated challenged) control group, whereas, in the trial-II, RPS of 60% and 66.6% were obtained for CNPs-IV (immersion/immersion) and CNPs-IV (immersion/oral) groups, respectively. In addition, specific (anti-VHSV) antibody titre in the fish sera, skin mucus and intestinal mucus of the immunized groups were significantly (p < 0.05) enhanced following vaccination. Furthermore, CNPs-IV immunized fish showed significant (p < 0.05) upregulation of different immune gene transcripts (IgM, IgT, pIgR, MHC-I, MHC-II, IFN-γ, and Caspase3) compared to control, in both the systemic (kidney) and mucosal (skin and intestine) immune compartments of the host post immunization as well as post challenge. To conclude, mucosal immunization with CNPs-IV vaccine can orchestrate an effective immunization strategy in organizing a coordinative immune response against VHSV in olive flounder thereby exhibiting higher protective efficacy to the host with minimum stress.


Assuntos
Quitosana/administração & dosagem , Doenças dos Peixes/prevenção & controle , Septicemia Hemorrágica Viral/prevenção & controle , Nanopartículas/administração & dosagem , Novirhabdovirus/imunologia , Vacinas Virais/administração & dosagem , Animais , Materiais Biocompatíveis/administração & dosagem , Composição de Medicamentos , Linguados , Linguado , Nanocápsulas , Distribuição Aleatória , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/imunologia
10.
Vaccine ; 37(7): 973-983, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30661835

RESUMO

Viral haemorrhagic septicaemia virus (VHSV), an OIE listed viral pathogen, is the etiological agent of a contagious disease, causing huge economic losses in farmed olive flounder (Paralichthys olivaceus) and significant mortalities among several other marine fish species in Korea, Japan, and China. In continuation with our previous work, where injection vaccination with inactivated VHSV mixed with squalene (as adjuvant) conferred higher protective immunity to olive flounder, the present study focused on replacing the injection route of vaccine delivery by immersion/oral route to overcome the limitations of the parenteral immunization method. Here, we encapsulated the inactivated VHSV vaccine with PLGA (poly lactic-co-glycolic acid) nanoparticles (PNPs-IV) and evaluated its ability to induce protective immunity in olive flounder (12.5 ±â€¯1.5 g) by initially immunizing the fishes by immersion route followed by a booster with the same dose two weeks later with half of the fish through immersion route and other half through oral route (incorporated into fish feed). Cumulative mortalities post-challenge (1 × 106 TCID50 virus/fish) with virulent VHSV-isolate, were lower in vaccinated fish and RPS of 60% and 73.3% were obtained for PNPs-IV (immersion/immersion) and PNPs-IV (immersion/oral) groups, respectively. In addition, specific (anti-VHSV) antibody titre in the fish sera, skin mucus and intestinal mucus of the immunized groups were significantly (p < 0.05) enhanced following vaccination. Furthermore, PNPs-IV immunized fish showed significant (p < 0.05) upregulation of different immune gene transcripts (IgM, IgT, pIgR, MHC-I, MHC-II, IFN-γ, and Caspase3) compared to controls, in both the systemic (kidney) and mucosal (skin and intestine) immune compartment of the host post immunization as well as post challenge. Thus it can be inferred that the adopted immunization strategy efficiently protected and transported the inactivated viral antigen to target immune organs and positively stimulated the protective immune response against VHSV in olive flounder.


Assuntos
Portadores de Fármacos/administração & dosagem , Septicemia Hemorrágica Viral/prevenção & controle , Imunidade nas Mucosas , Novirhabdovirus/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Administração através da Mucosa , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Doenças dos Peixes/prevenção & controle , Linguado , Mucosa Intestinal/imunologia , Coreia (Geográfico) , Muco/imunologia , Pele/imunologia , Análise de Sobrevida , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
11.
Vaccine ; 36(16): 2155-2165, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29544687

RESUMO

DNA-based immunization has proven to be an effective prophylactic measure to control aquatic animal diseases. In order to improve the efficiency of vaccine against fish pathogen, novel delivery mechanism needs to be adopted. In the present study we nanoconjugated the previously constructed DNA vaccine (pGPD + IFN) with chitosan nanoparticles (CNPs) by complex coacervation process. After construction of the vaccine, an in vivo vaccination trial was conducted in which 2 groups of rohu (L. rohita) fingerlings were vaccinated with CNPs-pGPD + IFN, one group by oral route (incorporated in feed for 14 days) and the other by immersion route (primary and booster immunised), whereas, a third group was intramuscularly (I/M) injected (initial and booster immunised) with naked pGPD + IFN and subsequently challenged with E. tarda (8.7 × 104 CFU/fish) at 35-day post initial vaccination. The protective immune responses were determined in terms of relative percentage survival (RPS), specific antibody production, non-specific immune response, expression kinetics of immune-related genes and pathological manifestation. Evaluation of RPS analysis revealed that CNPs-pGPD + IFN groups recorded highest RPS (81.82% and 72.73% in oral and immersion vaccinated fish group respectively) while the naked pGPD + IFN injected group showed 63.62% RPS when compared with 55% cumulative mortality of control group. In addition, NBT, myeloperoxidase activity, serum lysozyme activity and specific antibody titre in case of CNPs-pGPD + IFN groups showed higher activities during all the time points. Furthermore, CNPs-pGPD + IFN groups showed significant (p < 0.05) upregulation of different immune gene transcripts (IgHC, iNOS, TLR22, NOD1 and IL-1ß) in three immunologically important tissues post immunization (both primary and booster dose) as well as after challenge. Thus, from this study, we can conclude that oral or immersion vaccination with CNPs-pGPD + IFN can orchestrate an effective immunisation strategy in organizing a coordinative immune response against E. tarda in L. rohita exhibiting minimum stress to the host with maximum efficacy.


Assuntos
Vacinas Bacterianas/imunologia , Quitosana , Edwardsiella tarda/imunologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Nanopartículas , Vacinas de DNA/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/administração & dosagem , Doenças dos Peixes/genética , Doenças dos Peixes/mortalidade , Doenças dos Peixes/prevenção & controle , Expressão Gênica , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , Imunização , Imunomodulação , Vacinas de DNA/administração & dosagem
12.
Fish Shellfish Immunol ; 66: 575-582, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28549942

RESUMO

Rohu (Labeo rohita), an Indian Major Carp (IMC) is an economically important aquaculture species in India. Inspite of the technological advances, infectious diseases caused by viruses, bacteria and parasites have been a major limiting factor in the development and profitability of fish farms. At present, information regarding the immune status of the Indian major carps is limited. This lack of knowledge is a major impediment for establishment of effective preventive measures against broad spectrum of infectious agents. The present study was undertaken to examine the modulation of few immune-regulatory genes: IgHC, NOD 1, TLR 22, iNOS and IL-1ß during experimental infection of E. tarda in L. rohita to understand their role in pathogenesis. Rohu fingerlings were intra-peritoneally injected with Edwardsiella tarda (LD50 dose of 8.7 × 104 CFU/fish) and sampled for three immunologically important organs (kidney, liver and spleen) at different time intervals (zero hour or pre-challenge and 6 h, 12 h, 24 h, 48 h and 96 h post challenge). For absolute quantification of genes by real time RT-PCR, all the genes transcript were amplified from Poly I:C induced rohu lymphocytes and cloned in pTZ57R/T plasmid. Standard curves for each gene was generated from serially diluted plasmid bearing respective genes. Evaluation of copy number of different genes present in the tissue showed that the expression of IgHC, iNOS and IL-1ß was highest in kidney followed by spleen and least in liver. While for NOD 1 and TLR 22 gene, liver showed higher expression than kidney and spleen. Further, the expression of IgHC, INOS, TLR 22, NOD 1 and IL-1ß genes significantly differed (P < 0.05) in the E. tarda challenged fish when compared with pre-challenged control fish. Among the five genes we studied, the basal expression of TLR 22 gene was highest. The result also depicts that iNOS and NOD 1 are immediate responsive genes as their expression reached maximum level at 6-24 h post infection (hpi) after which the expression declined. In contrast, TLR 22 and IgHC gene transcript showed enhanced expression during the late phase of with maximum expression observed after 48 hpi and 96 hpi respectively. IL-1ß, being the exception, showed high expression both at 24 hpi and 96 hpi. From this study, we conclude that these five immune genes have a definite role to play in the defense mechanism of host (L. rohita) against E. tarda.


Assuntos
Cyprinidae , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Animais , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA