Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0304328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787825

RESUMO

Nutritive value of five Cenchrus ciliaris (buffel grass) genotypes (IG96-50, IG96-96, IG96-358, IG96-401 and IG96-403) weredetermined. Their sugar contents (>70 mg/g of dry matter) and ensiling potential were evaluated using in vitro batch culture and in vivo studies. Research indicated significant differences (P < 0.05) in the dry matter, organic matter, ether extract, neutral detergent fiber, acid detergent fiber, cellulose and lignin contents of the C. ciliaris genotypes tested. Genotypes also differed (P < 0.05) in total carbohydrates, structural carbohydrates, non-structural carbohydrates and protein fractions. Genotype IG96-96 had the lowest total digestible nutrients, digestible energy and metabolizable energy contents (377.2 g/kg, 6.95 and 5.71 MJ/kg of dry matter, respectively), and net energy values for lactation, maintenance and growth. After 45 days of ensiling, C. ciliaris silages differed (P < 0.05) in dry matter, pH, and lactic acid contents, and their values ranged between 255-339, 4.06-5.17 g/kg of dry matter and 10.8-28.0 g/kg of dry matter, respectively. Maize silage had higher (P < 0.05) Organic Matter (919.5g/kg of dry matter), ether extract (20.4g/kg of dry matter) and hemi-cellulose (272.3 g/kg of dry matter) than IG96-401 and IG96-96 silages. The total carbohydrates and non-structural carbohydrates of maize silage were higher (P < 0.05), while structural carbohydrates were comparable (P < 0.05) with C. ciliaris silages. Sheep on maize silage had (P < 0.05) higher metabolizable energy, lower crude protein, and digestible crude protein intake (g/kg of dry matter) than those on C. ciliaris silage diets. Nitrogen intake and urinary-N excretion were higher (P < 0.05) on genotype IG96-96 silage diet. Overall, this study suggested that certain C. ciliaris genotypes, notably IG96-401 and IG96-96, exhibited nutritive values comparable to maize silage in sheep studies, offering a promising avenue for future exploration as potential alternatives in diversified and sustainable livestock nutrition programs.


Assuntos
Cenchrus , Genótipo , Valor Nutritivo , Silagem , Zea mays , Animais , Silagem/análise , Zea mays/genética , Zea mays/química , Ovinos , Cenchrus/genética , Cenchrus/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Feminino , Ração Animal/análise , Digestão
2.
Heliyon ; 10(10): e31541, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813156

RESUMO

Oat is a dual-purpose crop used for both food and feed for animals. The objective of this work is to characterize oat varieties for their genetic diversity in yield, physical traits, and nutritional composition, aiming to identify potential parent varieties for breeding programs to develop new oat varieties for improved livestock feed and diverse industrial applications. To conduct, chemical analysis for protein and carbohydare fractions, energy and digestible nutrient estimated, stastical analyses performed to assess genetic variations for traits among vaieties. Significant genetic variation (p < 0.05) for grain yield, grain density, sieving percentage, crude protein, ether extract, neutral and acid detergent fiber, cellulose, lignin, neutral and acid detergent insoluble nitrogen were observed in grains of eight oat varieties. All protein fractions exhibited significant differences (p < 0.05). Total carbohydrate content ranged significantly (p < 0.05) from 73 % to 79 %. The grains contained higher levels of intermediately degradable starch and pectin (54.12-60.16 %) compared to the slowly degradable cell wall (26-33 %), lignin bounded cell wall (6-10 %), and rapidly degradable sugars (2-8%). Significant variation (p < 0.05) was observed in terms of gross energy, digestible energy, metabolizable energy, net energy for maintenance and lactation about (2 Mcal/kg dry matter), gain (1.6-1.8 Mcal/kg dry matter), total digestible nutrients, digestible dry matter, rumen degradable protein, and total digestible nutrients related to crude protein, fatty acid, neutral detergent fiber, and non-fiber carbohydrate. Organic matter and ether extract were positively associated (p < 0.01) with total digestible nutrients, digestible and metabolizable energy, dry matter digestible and truly digestible non fibrous cabohydrates, while neutral and acid detergent fiber and cellulose showed negative correlation. The research shows that oat varieties vary widely in their yield, physical features, and nutritional content, offering potential for breeding better varieties for both animal feed and industrial uses.

3.
Front Chem ; 12: 1359049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380397

RESUMO

Two new proanthocyanidins (2S:3S)-(-)-epicatechin-(4α→8)4-(2R:3R)-(+)-catechin (Compound 1) and (2R, 3R)-3-O-galloyl-(+)-catechin (4ß→8)3-(2R, 3R)-3-O-galloyl-(+)-catechin (Compound 2) were isolated from Ficus glomerata and characterized by ultraviolet spectroscopy (UV), proton nuclear magnetic resonance (1H NMR), 13C NMR, and heteronuclear multiple bond correlation . The bioactivity and drug scores of isolated compounds were predicted using OSIRIS property explorer applications with drug scores of 0.03 (compound 1) and 0.05 (compound 2). Predictive drug scores provided an indication of the compounds' potential to demonstrate desired biological effects. Furthermore, the newly discovered proanthocyanidins tended to interact with protein due to their chemical structure and molecular conformation. With the aim of maintaining this focus, compounds 1 and 2 were subjected to in vitro testing against ruminal enzymes to further explore their potential impact. Both compounds showed significant inhibition activities (p < 0.01) against glutamic oxaloacetic transaminase in both protozoa and bacterial fractions, with an effective concentration (EC50) of 12.30-18.20 mg/mL. The compounds also exhibited significant inhibition (p < 0.01) of ruminal glutamic pyruvic transaminase activity, with EC50 values ranging from 9.77 to 17.38 mg/mL. Furthermore, the inhibition was recorded in R-cellulase between EC50 values of 15.85 and 23.99 mg/mL by both compounds. Additionally, both compounds led to a decrease in protease activity with increasing incubation time and concentration. In conclusion, the results indicate that these novel proanthocyanidins hold the potential to significantly impact rumen enzyme biology. Furthermore, their promising effects suggest that they could be further explored for drug development and other important applications.

4.
Animals (Basel) ; 13(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067027

RESUMO

This study evaluated 5 annual and 11 perennial Indian pasture legumes species for their nutritive value, dry matter and mineral contents and in vitro fermentation parameters. Legume species differed significantly (p < 0.05) in various nutritional aspects such as organic matter, crude protein (CP), ether extract, fibres and protein fractions. Perennial Clitoria ternateaa had higher (p < 0.05) buffer soluble protein (477), while neutral detergent soluble protein was highest in annually grown Lablab purpureus (420 g/kg CP). Atylosia scarabaeoides (AS) had higher levels of nonstructural carbohydrates (NSCs) (392 g/kg dry matter (DM)) than structural carbohydrates (SC) (367 g/kg DM). Its rapidly degradable fraction (51.7 g/kg (total carbohydrate) tCHO) was lower (p < 0.05) than other fractions of carbohydrates. Total digestible nutrients, digestible energy and metabolisable energy varied, with Desmodium virgatus (DV) having higher values and Stylosanthas seabrana (SSe) having the lowest. Predicted dry matter intake, digestible dry matter and relative feed value also showed significant differences (p < 0.05). Annual grasses such as Dolichos biflorus, Macroptilium atropurpureum, Rhynchosia minima (RM) were found to be better balanced with micro minerals. In vitro dry matter degradability, partition factor, short-chain fatty acids and microbial protein production of legumes varied significantly (p < 0.05). Gas and CH4 production (mL/g and mL/g (digestible DM) DDM) also varied, with Clitoria ternatea-blue having the highest gas production and C. ternatea -white (CT-w) and AS having lower CH4 production. Methane in total gas was low for DV, RM and CT-w (8.99%, 9.72% and 9.51%). Loss of DE and ME as CH4 varied (p < 0.05) among the legumes. Each legume offers unique benefits, potentially allowing for tailored combinations of annual and perennial legumes to optimize rumen feed efficiency.

5.
Proteomes ; 11(4)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133152

RESUMO

Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants' ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.

6.
Sci Rep ; 13(1): 17545, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845251

RESUMO

Disposal of significant tonnages of rice straw is expensive, but using it to mobilise phosphorus (P) from inorganically fixed pools in the soil may add value. This study was carried out to determine whether the use of rice straw mixed with phosphorus-solubilizing microbes could solubilize a sizable portion fixed soil P and affect P transformation, silicon (Si) concentration, organic acid concentrations, and enzyme activity to increase plant growth. Depending on the soil temperature, the application of rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes could solubilize 3.4-3.6% of inorganic P, and minimised the hysteresis impact by 6-8%. At plant maturity, application of rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes and 75% of recommended P application raised the activity of dehydrogenase, alkaline phosphatase activity, cellulase, and peroxidase by 77, 65, 87, and 82% in soil, respectively. It also boosted Si concentration in the soil by 58%. Wheat grain yield was 40% and 18% higher under rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes with 75% of recommended P application than under no and 100% P application, respectively. Rice grain yield also increased significantly with the same treatment. Additionally, it increased root volume, length, and P uptake by 2.38, 1.74 and 1.62-times above control for wheat and 1.98, 1.67, and 2.06-times above control for rice, respectively. According to path analysis, P solubilisation by Si and organic acids considerably increased (18-32%) P availability in the rhizosphere. Therefore, cultivators could be advised to use rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes with 75% P of mineral P fertiliser to save 25% P fertiliser without reducing wheat and rice yield.


Assuntos
Oryza , Solo , Solo/química , Fósforo , Triticum , Fertilizantes/análise , Grão Comestível/química , Compostos Orgânicos/análise , Agricultura
7.
Front Vet Sci ; 10: 1163197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152684

RESUMO

Two novel proanthocyanidins, (2R, 3R)-(+)-Gallocatechin-(4ß â†’ 8)4-(2R, 3R)-(+)-gallocatechin (compound 1) and 3-O-galloyl-(2S, 3S)-(-)-epicatechin-(4α → 8)-[3-O-galloyl-(2S, 3S)-(-)-epicatechin (4α → 8)]2-(2S, 3S)-(-)-epicatechin (compound 2), were structurally characterized from leaves of Anogeissus pendula. The structures were determined by ultraviolet spectroscopy (UV), proton nuclear magnetic resonance (1H NMR), 13C NMR, and heteronuclear multiple bond correlation. Molinspiration and Osiris property explorer applications were used to predict bioactivity and drug score. Drug scores of 0.08 and 0.05 were predicted for compounds 1 and 2, respectively. Predicted bioactivity scores were high. Due to their molecular weight, chemical structure, and conformation, the newly discovered proanthocyanidins possess an inclination to interact with proteins. Based on this premise, both compounds were subjected to in vitro testing against ruminal enzymes. They exhibited significant inhibition activities (p < 0.01) with a range of half maximal effective concentration (EC50) of 14.80-17.88 mg/mL of glutamic oxaloacetic transaminase in both protozoa and bacteria fractions. The ruminal glutamic pyruvic transaminase activity was significantly inhibited (p < 0.01) from EC50 12.59-16.29 mg/mL, and R-cellulase inhibition was recorded with EC50 18.20-21.98 mg/mL by compounds 1 and 2, respectively. Protease activity decreased with increasing incubation time and concentration of both compounds. The novel proanthocyanidins have potential roles in improving feed conversion ratios and in drug development.

8.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677885

RESUMO

Annual ryegrass toxicity (ARGT) is an often-fatal poisoning of livestock that consume annual ryegrass infected by the bacterium Rathayibacter toxicus. This bacterium is carried into the ryegrass by a nematode, Anguina funesta, and produces toxins within seed galls that develop during the flowering to seed maturity stages of the plant. The actual mechanism of biochemical transformation of healthy seeds to nematode and bacterial gall-infected seeds remains unclear and no clear-cut information is available on what type of volatile organic compounds accumulate in the respective galls. Therefore, to fill this research gap, the present study was designed to analyze the chemical differences among nematode galls (A. funesta), bacterial galls (R. toxicus) and healthy seeds of annual ryegrass (Lolium rigidum) by using direct immersion solid-phase microextraction (DI-SPME) coupled with gas chromatography−mass spectrometry (GC-MS). The method was optimized and validated by testing its linearity, sensitivity, and reproducibility. Fifty-seven compounds were identified from all three sources (nematode galls, bacterial galls and healthy seed), and 48 compounds were found to be present at significantly different (p < 0.05) levels in the three groups. Five volatile organic compounds (hexanedioic acid, bis(2-ethylhexyl) ester), (carbonic acid, but-2-yn-1-yl eicosyl ester), (fumaric acid, 2-ethylhexyl tridec-2-yn-1-yl ester), (oct-3-enoylamide, N-methyl-N-undecyl) and hexacosanoic acid are the most frequent indicators of R. toxicus bacterial infection in ryegrass, whereas the presence of 15-methylnonacosane, 13-methylheptacosane, ethyl hexacosyl ether, heptacosyl acetate and heptacosyl trifluoroacetate indicates A. funesta nematode infestation. Metabolites occurring in both bacterial and nematode galls included batilol (stearyl monoglyceride) and 9-octadecenoic acid (Z)-, tetradecyl ester. Among the chemical functional group, esters, fatty acids, and alcohols together contributed more than 70% in healthy seed, whereas this contribution was 61% and 58% in nematode and bacterial galls, respectively. This study demonstrated that DI-SPME is a valid technique to study differentially expressed metabolites in infected and healthy ryegrass seed and may help provide better understanding of the biochemical interactions between plant and pathogen to aid in management of ARGT.


Assuntos
Lolium , Nematoides , Compostos Orgânicos Voláteis , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Microextração em Fase Sólida/métodos , Imersão , Reprodutibilidade dos Testes , Ésteres/análise , Sementes/química
9.
Animals (Basel) ; 14(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38200874

RESUMO

The water buffalo faces challenges in optimizing nutrition due to varying local feed resources. In response to this challenge, the current study introduces originality by addressing the lack of region-specific feeding strategies for water buffaloes. This is achieved through the formulation of 30 different diets based on locally available resources, offering a tailored approach to enhance nutritional optimization in diverse agroecological contexts. These diets were segmented into three groups of ten, each catering to the maintenance (MD1 to MD10), growth (GD1 to GD10), and lactation/production (PD1 to PD10) needs of buffaloes. Utilizing local feed ingredients, each diet was assessed for its chemical composition, in vitro gas and methane emissions, and dry matter (DM) disappearance using buffalo rumen liquor. The production diets (127 and 32.2 g/kg DM) had more protein and fats than the maintenance diets (82.0 and 21.0 g/kg DM). There was less (p < 0.05) fiber in the production diets compared to the maintenance ones. Different protein components (PB1, PB2) were lower (p < 0.05) in the maintenance diets compared to the growth and production ones, but other protein fractions (PB3, Pc) were higher (p < 0.05) in the maintenance diet. Furthermore, the growth diets had the highest amount of other protein components (PA), while the maintenance diets had the highest amount of soluble carbohydrates (586 g/kg DM), whereas the carbohydrate fraction (CB1) was highest (p < 0.05) in the production diets (187 g/kg DM), followed by the growth (129 g/kg DM) and maintenance diets (96.1 g/kg DM). On the contrary, the carbohydrate CA fraction was (p < 0.05) higher in the maintenance diets (107 g/kg DM) than in the growth (70.4 g/kg DM) and production diets (44.7 g/kg DM). The in vitro gas production over time (12, 24, and 48 h) was roughly the same for all the diets. Interestingly, certain components (ether extract, lignin, NDIN, ADIN, and PB3 and CC) of the diets seemed to reduce methane production, while others (OM, NPN, SP, PA and PB1, tCHO and CB2) increased it. In simple words, this study reveals that different diets affect gas production during digestion, signifying a significant step towards a promising future for buffalo farming through tailored, region-specific formulations.

10.
Molecules ; 27(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144604

RESUMO

This study investigated the principal leaf protein (rubisco) solubilization and in vitro ruminal enzyme activity in relation to the molecular structure of proanthocyanidins extracted from leaves of Anogeissus pendula and Eugenia jambolana. Six proanthocyanidin fractions were extracted by 50% (v/v) methanol−water followed by 70% (v/v) acetone−water and then distilled water from leaves of A. pendula (AP) and E. jambolana (EJ) to yield EJ−70, EJ−50, EJ−DW, AP−70, AP−50 and AP−DW. Fractions were examined for their molecular structure and their effects on sheep ruminal enzymes and solubilization of rubisco in vitro. All fractions significantly (p < 0.05) inhibited the activity of ruminal glutamic oxaloacetic transaminase and glutamic pyruvic transaminase. The fractions AP−50 and EJ−50 significantly inhibited the activity of the R-cellulase enzyme. Most of the fractions inhibited R-glutamate dehydrogenase activity (p < 0.05) by increasing its concentration, while protease activity decreased by up to 58% with increasing incubation time and concentration. The solubilization of rubisco was observed to be comparatively higher in A. pendula (16.60 ± 1.97%) and E. jambolana (15.03 ± 1.06%) than that of wheat straw (8.95 ± 0.95%) and berseem hay (3.04 ± 0.08%). A significant (p < 0.05) increase in protein solubilization was observed when wheat straw and berseem hay were supplemented with A. pendula and E. jambolana leaves at different proportions. The efficiency of microbial protein was significantly (p < 0.05) greater with the supplementation of leaves of A. pendula in comparison to E. jambolana. The overall conclusion is that the proanthocyanidins obtained from E. jambolana exhibited greater inhibitory activities on rumen enzymes, whereas A. pendula recorded higher protein solubilization. Thus, PAs from A. pendula and E. jambolana appear to have the potential to manipulate rumen enzyme activities for efficient utilization of protein and fiber in ruminants.


Assuntos
Celulase , Proantocianidinas , Acetona/metabolismo , Alanina Transaminase/metabolismo , Ração Animal , Animais , Aspartato Aminotransferases/metabolismo , Celulase/metabolismo , Glutamato Desidrogenase , Metanol/metabolismo , Peptídeo Hidrolases/metabolismo , Proantocianidinas/metabolismo , Proantocianidinas/farmacologia , Ribulose-Bifosfato Carboxilase , Rúmen/metabolismo , Ovinos , Triticum/metabolismo , Água/metabolismo
11.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014391

RESUMO

Three proanthocyanidin fractions per species were sequentially extracted by 50% (v/v) methanol−water, 70% (v/v) acetone−water, and distilled water from leaves of Ficus racemosa (fractions FR) and F. religiosa (fractions FRL) to yield fractions FR-50, FR-70, FR-DW, FRL-50, FRL-70, and FRL-DW. Fractions were examined for their molecular structure, effect on ruminal enzyme activities, and principal leaf protein (Rubisco) solubilization in vitro. All fractions except FRL-70 contained flavonoids including (+) catechin, (−) epicatechin, (+) gallocatechin, (−) epigallocatechin, and their -4-phloroglucinol adducts. The fractions FRL-50 and FRL-DW significantly (p < 0.05) inhibited the activity of ruminal glutamic oxaloacetic transaminase and glutamic pyruvic transaminase. All fractions inhibited glutamate dehydrogenase activity (p < 0.05) with increasing concentration, while protease activity decreased 15−18% with increasing concentrations. Fractions FRL-50 and FRL-DW completely inhibited the activity of cellulase enzymes. Solubilization of Rubisco was higher in F. religiosa (22.36 ± 1.24%) and F. racemosa (17.26 ± 0.61%) than that of wheat straw (WS) (8.95 ± 0.95%) and berseem hay (BH) (3.04 ± 0.08%). A significant (p < 0.05) increase in protein solubilization was observed when WS and BH were supplemented with FR and FRL leaves at different proportions. The efficiency of microbial protein was significantly (p < 0.05) greater in diets consisting of WS and BH with supplementation of F. racemosa leaves in comparison to those supplemented with F. religiosa leaves. The overall conclusion is that the fractions extracted from F. religiosa showed greater inhibitory effects on rumen enzymes and recorded higher protein solubilization in comparison to the F. racemosa. Thus, PAs from F. religiosa are potential candidates to manipulate rumen enzymes activities for efficient utilization of protein and fiber in ruminants.


Assuntos
Ficus , Proantocianidinas , Animais , Proantocianidinas/metabolismo , Proantocianidinas/farmacologia , Ribulose-Bifosfato Carboxilase , Rúmen/metabolismo , Triticum , Água/metabolismo
12.
J Pestic Sci ; 43(4): 225-232, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30479542

RESUMO

The Indian livestock population is huge. Most (99%) of the livestock owners still follow traditional animal husbandry practices and graze their livestock, especially small ruminants, on natural pastures where no pesticides are used. In order to feed the ever-increasing livestock population, efforts are being made to increase quality fodder productivity from limited land resources. In such situations, pesticides play an important role by minimizing the loss of green fodder due to disease and pest attack. In countries such as Canada, Israel, the UK, and other European countries, pesticides have been registered for forage crops; in India, however, although pesticides have been registered for cultivable grain, horticultural and cash crops, etc., there are no registration guidelines or authenticated information regarding pesticide use with regard to forage crops. Hence, there is a need to take necessary steps in this direction, keeping in view the importance of fodder and livestock in the country. In this review, detailed aspects of the status and use of pesticides in forage crops in India are discussed.

13.
J Environ Sci Health B ; 50(9): 674-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26079342

RESUMO

Controlled release nanoformulations of carbendazim (Methyl 1H-benzimidazol-2-ylcarbamate), a systemic fungicide, have been prepared using laboratory synthesized poly(ethylene glycols) (PEGs)-based functionalized amphiphilic copolymers. The release kinetics of carbendazim from developed controlled release (CR) formulations was studied and compared with that of the commercially available 50% Wettable Powder (WP). Further, the bioefficacy evaluation of developed formulations was done against plant pathogenic fungi Rhizoctonia solani by the poison food technique method. The release of maximum amount of carbendazim from developed formulations was dependent on the molecular weight of PEGs and was found to increase with increasing molecular weights. The range of carbendazim release was found to be between 10th to 35th day as compared to commercial formulation which was up to 7th day. The diffusion exponent (n value) of carbendazim in water ranged from 0.37 to 0.52 in the tested formulations. The half-release (t1/2) values ranged between 9.47 and 24.20 days, and the period of optimum availability (POA) of carbendazim ranged from 9.15 to 26.63 days. Also, ED50 values of the developed formulations vary from 0.40 to 0.74 mg L(-1). These formulations can be used to optimize the release of carbendazim to achieve disease control for the desired period depending on the matrix of the polymer used.


Assuntos
Benzimidazóis/efeitos adversos , Benzimidazóis/química , Carbamatos/efeitos adversos , Carbamatos/química , Preparações de Ação Retardada/química , Fungicidas Industriais/efeitos adversos , Fungicidas Industriais/química , Doenças das Plantas/prevenção & controle , Rhizoctonia/efeitos dos fármacos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA