Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 6464, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691465

RESUMO

Ketamine, a well-known anesthetic, has recently attracted renewed attention as a fast-acting antidepressant. A single dose of ketamine induces rapid synaptogenesis, which may underlie its antidepressant effect. To test whether repeated exposure to ketamine triggers sustained synaptogenesis, we administered a sub-anesthetic dose of ketamine (10 mg/kg i.p.) once-daily for 5 days, and repeatedly imaged dendritic spines of the YFP-expressing pyramidal neurons in somatosensory cortex of awake female mice using in vivo two-photon microscopy. We found that the spine formation rate became significantly higher at 72-132 h after the first ketamine injection (but not at 6-24 h), while the rate of elimination of pre-existing spines remained unchanged. In contrast to the net gain of spines observed in ketamine-treated mice, the vehicle-injected control mice exhibited a net loss typical for young-adult animals undergoing synapse pruning. Ketamine-induced spinogenesis was correlated with increased PSD-95 and phosphorylated actin, consistent with formation of new synapses. Moreover, structural synaptic plasticity caused by ketamine was paralleled by a significant improvement in the nest building behavioral assay. Taken together, our data show that subchronic low-dose ketamine induces a sustained shift towards spine formation.


Assuntos
Espinhas Dendríticas/efeitos dos fármacos , Ketamina/farmacologia , Córtex Somatossensorial/efeitos dos fármacos , Anestésicos/farmacologia , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Ketamina/administração & dosagem , Ketamina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Células Piramidais/efeitos dos fármacos , Sinapses/fisiologia
2.
J Vis Exp ; (88): e51869, 2014 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-24998224

RESUMO

It is widely acknowledged that the use of general anesthetics can undermine the relevance of electrophysiological or microscopical data obtained from a living animal's brain. Moreover, the lengthy recovery from anesthesia limits the frequency of repeated recording/imaging episodes in longitudinal studies. Hence, new methods that would allow stable recordings from non-anesthetized behaving mice are expected to advance the fields of cellular and cognitive neurosciences. Existing solutions range from mere physical restraint to more sophisticated approaches, such as linear and spherical treadmills used in combination with computer-generated virtual reality. Here, a novel method is described where a head-fixed mouse can move around an air-lifted mobile homecage and explore its environment under stress-free conditions. This method allows researchers to perform behavioral tests (e.g., learning, habituation or novel object recognition) simultaneously with two-photon microscopic imaging and/or patch-clamp recordings, all combined in a single experiment. This video-article describes the use of the awake animal head fixation device (mobile homecage), demonstrates the procedures of animal habituation, and exemplifies a number of possible applications of the method.


Assuntos
Comportamento Animal/fisiologia , Eletrofisiologia/instrumentação , Microscopia/instrumentação , Análise de Célula Única/instrumentação , Animais , Craniotomia/métodos , Eletrofisiologia/métodos , Feminino , Masculino , Camundongos , Microscopia/métodos , Neuroimagem/métodos , Análise de Célula Única/métodos
3.
Cell Calcium ; 50(6): 491-501, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21917311

RESUMO

Neuronal ceroid lipofuscinoses (NCLs) are a group of genetic childhood-onset progressive brain diseases characterized by a decline in mental and motor capacities, epilepsy, visual loss and premature death. Using patch clamp, fluorescence imaging and caged Ca(2+) photolysis, we evaluated the mechanisms of neuronal Ca(2+) clearance in Cln8(mnd) mice, a model of the human NCL caused by mutations in the CLN8 gene. In Cln8(mnd) hippocampal slices, Ca(2+) clearance efficiency in interneurons and, to some extent, principal neurons declined with age. In cultured Cln8(mnd) hippocampal neurons, clearance of large Ca(2+) loads was inefficient due to impaired mitochondrial Ca(2+) uptake. In contrast, neither Ca(2+) uptake by sarco/endoplasmic reticulum Ca(2+) ATPase, nor Ca(2+) extrusion through plasma membrane was affected by the Cln8 mutation. Excitotoxic glutamate challenge caused Ca(2+) deregulation more readily in Cln8(mnd) than in wt neurons. We propose that neurodegeneration in human CLN8 disorders is primarily caused by reduced mitochondrial Ca(2+) buffering capacity.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Retículo Endoplasmático/genética , Fura-2 , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Hipocampo/metabolismo , Homeostase , Interneurônios/citologia , Camundongos , Microscopia de Fluorescência , Mitocôndrias/genética , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Técnicas de Patch-Clamp , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
4.
Neuron ; 56(6): 1019-33, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-18093524

RESUMO

The neuron-specific K-Cl cotransporter, KCC2, induces a developmental shift to render GABAergic transmission from depolarizing to hyperpolarizing. Now we demonstrate that KCC2, independently of its Cl(-) transport function, is a key factor in the maturation of dendritic spines. This morphogenic role of KCC2 in the development of excitatory synapses is mediated by structural interactions between KCC2 and the spine cytoskeleton. Here, the binding of KCC2 C-terminal domain to the cytoskeleton-associated protein 4.1N may play an important role. A more general conclusion based on our data is that KCC2 acts as a synchronizing factor in the functional development of glutamatergic and GABAergic synapses in cortical neurons and networks.


Assuntos
Citoesqueleto/fisiologia , Dendritos/ultraestrutura , Espinhas Dendríticas/fisiologia , Neurônios/citologia , Simportadores/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Proteínas do Citoesqueleto , Dendritos/metabolismo , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Proteínas de Fluorescência Verde/metabolismo , Humanos , Técnicas In Vitro , Lisina/análogos & derivados , Lisina/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout , Mutação/fisiologia , Proteínas do Tecido Nervoso , Neuropeptídeos , Técnicas de Patch-Clamp/métodos , Simportadores/deficiência , Transmissão Sináptica/fisiologia , Transfecção/métodos , Cotransportadores de K e Cl-
5.
Neurobiol Dis ; 28(1): 52-64, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17656100

RESUMO

Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of children, characterized by selective death of neocortical neurons. To understand early disease mechanisms in INCL, we have studied Ppt1(Deltaex4) knock-out mouse neurons in culture and acute brain slices. Global transcript profiling showed deregulation of key neuronal functions in knock-out mice including cholesterol metabolism, neuronal maturation, and calcium homeostasis. Cholesterol metabolism showed major changes; sterol biosynthesis was enhanced and steady-state amounts of sterols were altered at the cellular level. Changes were also present in early maturation of Ppt1(Deltaex4) neurons indicated by increased proliferative capacity of neuronal stem cells. Knock-out neurons presented unaltered electrophysiological properties suggesting uncompromised synaptic function in young animals. However, knock-out neurons exhibited more efficient recovery from glutamate-induced calcium transients, possibly indicating neuroprotective activation. This study established that the neuronal deregulation in INCL is linked to neuronal maturation, lipid metabolism and calcium homeostasis.


Assuntos
Cálcio/metabolismo , Colesterol/metabolismo , Homeostase , Neurônios/metabolismo , Tioléster Hidrolases/deficiência , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Imunofluorescência , Perfilação da Expressão Gênica , Hipocampo/metabolismo , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Neurônios/citologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Células-Tronco/citologia , Sinapses/metabolismo , Sinapses/patologia , Tioléster Hidrolases/genética
6.
Brain Cell Biol ; 35(1): 75-86, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17940914

RESUMO

Growing evidence suggests that astrocytes are the active partners of neurons in many brain functions. Astrocytic mitochondria are highly motile organelles which regulate the temporal and spatial patterns of Ca( 2+ ) dynamics, in addition to being a major source of ATP and reactive oxygen species. Previous studies have shown that mitochondria translocate to endoplasmic reticulum during Ca( 2+ ) release from internal stores, but whether a similar spatial interaction between mitochondria and plasma membrane occurs is not known. Using total internal reflection fluorescence (TIRF) microscopy we show that a fraction of mitochondria became trapped near the plasma membrane of cultured hippocampal astrocytes during exposure to the transmitters glutamate or ATP, resulting in net translocation of the mitochondria to the plasma membrane. This translocation was dependent on the intracellular Ca( 2+ ) rise because it was blocked by pre-incubation with BAPTA AM and mimicked by application of the Ca( 2+ ) ionophore ionomycin. Transmembrane Ca( 2+ ) influx induced by raising external Ca( 2+ ) also caused mitochondrial trapping, which occurred more rapidly than that produced by glutamate or ATP. In astrocytes treated with the microtubule-disrupting agent nocodazole, intracellular Ca( 2+ ) rises failed to induce trapping of mitochondria near plasma membrane, suggesting a role for microtubules in this phenomenon. Our data reveal the Ca( 2+ )-dependent trapping of mitochondria near the plasma membrane as a novel form of mitochondrial regulation, which is likely to control the perimembrane Ca( 2+ ) dynamics and regulate signaling by mitochondria-derived reactive oxygen species.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Antineoplásicos/farmacologia , Astrócitos/citologia , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Células Cultivadas , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Nocodazol/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA