Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Plants (Basel) ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679074

RESUMO

Microalgae as unicellular eukaryotic organisms demonstrate several advantages for biotechnological and biological applications. Natural derived microalgae products demand has increased in food, cosmetic and nutraceutical applications lately. The natural antioxidants have been used for attenuation of mitochondrial cell damage caused by oxidative stress. This study evaluates the in vitro protective effect of Chlorella vulgaris bioactive extracts against oxidative stress in human mesenchymal stromal/stem cells (MSCs). The classical solid-liquid and the supercritical extraction, using biomass of commercially available and laboratory cultivated C. vulgaris, are employed. Oxidative stress induced by 300 µM H2O2 reduces cell viability of MSCs. The addition of C. vulgaris extracts, with increased protein content compared to carbohydrates, to H2O2 treated MSCs counteracted the oxidative stress, reducing reactive oxygen species levels without affecting MSC proliferation. The supercritical extraction was the most efficient extraction method for carotenoids resulting in enhanced antioxidant activity. Pre-treatment of MSCs with C. vulgaris extracts mitigates the oxidative damage ensued by H2O2. Initial proteomic analysis of secretome from licensed (TNFα-activated) MSCs treated with algal extracts reveals a signature of differentially regulated proteins that fall into clinically relevant pathways such as inflammatory signaling. The enhanced antioxidative and possibly anti-inflammatory capacity could be explored in the context of future cell therapies.

2.
ACS Synth Biol ; 11(8): 2599-2609, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35922033

RESUMO

Escherichia coli is one of the most widely utilized hosts for recombinant protein production, including that of membrane proteins (MPs). We have recently engineered a specialized E. coli strain for enhanced recombinant MP production, termed SuptoxR. By appropriately co-expressing the effector gene rraA, SuptoxR can suppress the high toxicity, which is frequently observed during the MP-overexpression process, and, at the same time, enhance significantly the cellular accumulation of membrane-incorporated and properly folded recombinant MP. The combination of these two beneficial effects results in dramatically enhanced volumetric yields for various prokaryotic and eukaryotic MPs. Here, we engineered second-generation SuptoxR strains with further improved properties, so that they can achieve even higher levels of recombinant MP production. We searched for naturally occurring RraA variants with similar or improved MP toxicity-suppressing and production-promoting effects to that of the native E. coli RraA of the original SuptoxR strain. We found that the RraA proteins from Proteus mirabilis and Providencia stuartii can be even more potent enhancers of MP productivity than the E. coli RraA. By exploiting these two newly identified RraAs, we constructed two second-generation SuptoxR strains, termed SuptoxR2.1 and SuptoxR2.2, whose MP-production capabilities often surpass those of the original SuptoxR significantly. SuptoxR2.1 and SuptoxR2.2 are expected to become widely useful expression hosts for recombinant MP production in bacteria.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Plants (Basel) ; 11(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35009076

RESUMO

Microalgae are used in industrial and pharmaceutical applications. Their performance on biological applications may be improved by their immobilization. This study presents a way of cell immobilization using microalgae carrying magnetic properties. Nannochloropsis oceanica and Scenedasmus almeriensis cells were treated enzymatically (cellulase) and mechanically (glass beads), generating protoplasts as a means of incorporation of magnetic nanoparticles. Scanning electron microscopy images verified the successful cell wall destruction for both of the examined microalgae cells. Subsequently, protoplasts were transformed with magnetic nanoparticles by a continuous electroporation method and then cultured on a magnetic surface. Regeneration of transformed protoplasts was optimized using various organic carbon and amino acid supplements. Both protoplast preparation methods demonstrated similar efficiency. Casamino acids, as source of amino acids, were the most efficient compound for N. oceanica protoplasts regeneration in enzymatic and mechanical treatment, while for S. almeriensis protoplasts regeneration, fructose, as source of organic carbon, was the most effective. Protoplasts transformation efficiency values with magnetic nanoparticles after enzymatic or mechanical treatments for N. oceanica and S. almeriensis were 17.8% and 10.7%, and 18.6% and 15.7%, respectively. Finally, selected magnetic cells were immobilized and grown on a vertical magnetic surface exposed to light and without any supplement.

4.
Molecules ; 25(21)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139597

RESUMO

Intensive research on the use of magnetic nanoparticles for biotechnological applications of microalgae biomass guided the development of proper treatment to successfully incorporate them into these single-cell microorganisms. Protoplasts, as cells lacking a cell wall, are extensively used in plant/microalgae genetic manipulation as well as various biotechnological applications. In this work, a detailed study on the formation of protoplasts from Haematococcus pluvialis with the use of enzymatic and mechanical procedures was performed. The optimization of several parameters affecting the formation of protoplasmic cells and cell recovery was investigated. In the enzymatic treatment, a solution of cellulase was studied at different time points of incubation, whereas in the mechanical treatment, glass beads vortexing was used. Mechanical treatment gave better results in comparison to the enzymatic one. Concerning the cell recovery, after the protoplast formation, it was found to be similar in both methods used; cell viability was not investigated. To enhance the protoplast cell wall reconstruction, different "recovery media" with an organic source of carbon or nitrogen were used. Cell morphology during all treatments was evaluated by electron microscopy. The optimal conditions found for protoplast formation and cell reconstruction were successfully used to produce Haematococcus pluvialis cells with magnetic properties.


Assuntos
Clorofíceas , Nanopartículas de Magnetita/química , Microalgas , Protoplastos , Biotecnologia , Clorofíceas/química , Clorofíceas/metabolismo , Microalgas/química , Microalgas/metabolismo , Protoplastos/química , Protoplastos/metabolismo
5.
Genes (Basel) ; 11(6)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517019

RESUMO

Hepatocellular carcinoma (HCC) is associated with high mortality due to its inherent heterogeneity, aggressiveness, and limited therapeutic regimes. Herein, we analyzed 21 human HCC cell lines (HCC lines) to explore intertumor molecular diversity and pertinent drug sensitivity. We used an integrative computational approach based on exploratory and single-sample gene-set enrichment analysis of transcriptome and proteome data from the Cancer Cell Line Encyclopedia, followed by correlation analysis of drug-screening data from the Cancer Therapeutics Response Portal with curated gene-set enrichment scores. Acquired results classified HCC lines into two groups, a poorly and a well-differentiated group, displaying lower/higher enrichment scores in a "Specifically Upregulated in Liver" gene-set, respectively. Hierarchical clustering based on a published epithelial-mesenchymal transition gene expression signature further supported this stratification. Between-group comparisons of gene and protein expression unveiled distinctive patterns, whereas downstream functional analysis significantly associated differentially expressed genes with crucial cancer-related biological processes/pathways and revealed concrete driver-gene signatures. Finally, correlation analysis highlighted a diverse effectiveness of specific drugs against poorly compared to well-differentiated HCC lines, possibly applicable in clinical research with patients with analogous characteristics. Overall, this study expanded the knowledge on the molecular profiles, differentiation status, and drug responsiveness of HCC lines, and proposes a cost-effective computational approach to precision anti-HCC therapies.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Proteoma/genética , Transcriptoma/genética , Antineoplásicos/farmacologia , Biomarcadores Farmacológicos/análise , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Biologia Computacional , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heterogeneidade Genética , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteoma/efeitos dos fármacos , Proteômica , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
6.
Front Microbiol ; 11: 545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390953

RESUMO

Xylanolytic enzymes have a broad range of applications in industrial biotechnology as biocatalytic components of various processes and products, such as food additives, bakery products, coffee extraction, agricultural silage and functional foods. An increasing market demand has driven the growing interest for the discovery of xylanases with specific industrially relevant characteristics, such as stability at elevated temperatures and in the presence of other denaturing factors, which will facilitate their incorporation into industrial processes. In this work, we report the discovery and biochemical characterization of a new thermostable GH10 xylanase, termed XynDZ5, exhibiting only 26% amino acid sequence identity to the closest characterized xylanolytic enzyme. This new enzyme was discovered in an Icelandic hot spring enrichment culture of a Thermoanaerobacterium species using a recently developed bioinformatic analysis platform. XynDZ5 was produced recombinantly in Escherichia coli, purified and characterized biochemically. This analysis revealed that it acts as an endo-1,4-ß-xylanase that performs optimally at 65-75°C and pH 7.5. The enzyme is capable of retaining high levels of catalytic efficiency after several hours of incubation at high temperatures, as well as in the presence of significant concentrations of a range of metal ions and denaturing agents. Interestingly, the XynDZ5 biochemical profile was found to be atypical, as it also exhibits significant exo-activity. Computational modeling of its three-dimensional structure predicted a (ß/α)8 TIM barrel fold, which is very frequently encountered among family GH10 enzymes. This modeled structure has provided clues about structural features that may explain aspects of its catalytic performance. Our results suggest that XynDZ5 represents a promising new candidate biocatalyst appropriate for several high-temperature biotechnological applications in the pulp, paper, baking, animal-feed and biofuel industries.

7.
Plants (Basel) ; 9(5)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456121

RESUMO

The effect of iron, manganese, phosphorus and nitrogen on growth and lipid synthesis of the microalgae Nannochloropsis oceanica CCMP1779, as well as their impact on the magnetic harvesting efficiency, are examined under their depriving cell culture conditions. Herein, it is demonstrated that nitrogen and manganese depletion primarily reduced cell growth while phosphorus and iron restriction led to higher dry biomass. Subsequently, the role of those nutrients on fatty acids profile was examined. Phosphorus and nitrogen restriction resulted in lower and higher lipid content, respectively. High amounts of polyunsaturated fatty acids like eicosapentaenoic acid are produced under iron and manganese depletion. Phosphorus deprivation favors monounsaturated fatty acids such as C18:1 and C16:1, while nitrogen restriction favors saturated fatty acid production like C14:0, C16:0 and C18:0. Since the presence/absence of macro- and micro-elements may affect the overall electrostatic charges on the outmost microalgae surface, it was also analyzed how these elements affect the magnetic harvesting efficiency. Results showed that phosphorus deprivation led to the best magnetic harvesting efficiency of N. oceanica cells (93%) as compared to other nutrient starvation as well as standard medium.

8.
Comput Struct Biotechnol J ; 18: 686-695, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257052

RESUMO

Hepatocellular carcinoma (HCC) is an essentially incurable inflammation-related cancer. We have previously shown by network analysis of proteomic data that the flavonoids epigallocatechin gallate (EGCG) and fisetin (FIS) efficiently downregulated pro-tumor cytokines released by HCC through inhibition of Akt/mTOR/RPS6 phospho-signaling. However, their mode of action at the global transcriptome level remains unclear. Herein, we endeavor to compare gene expression alterations mediated by these compounds through a comprehensive transcriptome analysis based on RNA-seq in HEP3B, a responsive HCC cell line, upon perturbation with a mixture of prototypical stimuli mimicking conditions of tumor microenvironment or under constitutive state. Analysis of RNA-seq data revealed extended changes on HEP3B transcriptome imposed by test nutraceuticals. Under stimulated conditions, EGCG and FIS significantly modified, compared to the corresponding control, the expression of 922 and 973 genes, respectively, the large majority of which (695 genes), was affected by both compounds. Hierarchical clustering based on the expression data of shared genes demonstrated an almost identical profile in nutraceutical-treated stimulated cells which was virtually opposite in cells exposed to stimuli alone. Downstream enrichment analyses of the co-modified genes uncovered significant associations with cancer-related transcription factors as well as terms of Gene Ontology/Reactome Pathways and highlighted ECM dynamics as a nodal modulation point by nutraceuticals along with angiogenesis, inflammation, cell motility and growth. RNA-seq data for selected genes were independently confirmed by RT-qPCR. Overall, the present systems approach provides novel evidence stepping up the mechanistic understanding of test nutraceuticals, thus rationalizing their clinical exploitation in new preventive/therapeutic modalities against HCC.

9.
Front Genet ; 10: 469, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178894

RESUMO

Metagenomic analysis of environmental samples provides deep insight into the enzymatic mixture of the corresponding niches, capable of revealing peptide sequences with novel functional properties exploiting the high performance of next-generation sequencing (NGS) technologies. At the same time due to their ever increasing complexity, there is a compelling need for ever larger computational configurations to ensure proper bioinformatic analysis, and fine annotation. With the aiming to address the challenges of such an endeavor, we have developed a novel web-based application named ANASTASIA (automated nucleotide aminoacid sequences translational plAtform for systemic interpretation and analysis). ANASTASIA provides a rich environment of bioinformatic tools, either publicly available or novel, proprietary algorithms, integrated within numerous automated algorithmic workflows, and which enables versatile data processing tasks for (meta)genomic sequence datasets. ANASTASIA was initially developed in the framework of the European FP7 project HotZyme, whose aim was to perform exhaustive analysis of metagenomes derived from thermal springs around the globe and to discover new enzymes of industrial interest. ANASTASIA has evolved to become a stable and extensible environment for diversified, metagenomic, functional analyses for a range of applications overarching industrial biotechnology to biomedicine, within the frames of the ELIXIR-GR project. As a showcase, we report the successful in silico mining of a novel thermostable esterase termed "EstDZ4" from a metagenomic sample collected from a hot spring located in Krisuvik, Iceland.

10.
Enzyme Microb Technol ; 116: 64-71, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29887019

RESUMO

The catalytic behavior of a membrane-bound lipolytic enzyme (MBL-Enzyme) from the microalgae Nannochloropsis oceanica CCMP1779 was investigated. The biocatalyst showed maximum activity at 50 °C and pH 7.0, and was stable at pH 7.0 and temperatures from 40 to 60 °C. Half-lives at 60 °C, 70 °C and 80 °C were found 866.38, 150.67 and 85.57 min respectively. Thermal deactivation energy was 68.87 kJ mol-1. The enzyme's enthalpy (ΔΗ*), entropy (ΔS*) and Gibb's free energy (ΔG*) were in the range of 65.86-66.27 kJ mol-1, 132.38-140.64 J mol-1 K-1 and 107.80-115.81 kJ mol-1, respectively. Among p-nitrophenyl esters of fatty acids tested, MBL-Enzyme exhibited the highest hydrolytic activity against p-nitrophenyl palmitate (pNPP). The Km and Vmax values were found 0.051 mM and of 0.054 mmole pNP mg protein-1 min-1, respectively with pNPP as substrate. The presence of Mn2+ increased lipolytic activity by 68.25%, while Fe3+ and Cu2+ ions had the strongest inhibitory effect. MBL-Enzyme was stable in the presence of water miscible (66% of the initial activity in ethanol) and water immiscible (71% of the initial activity in n-octane) solvents. Myristic acid was found to be the most efficient acyl donor in esterification reactions with ethanol. Methanol was the best acyl acceptor among the primary alcohols tested.


Assuntos
Enzimas/química , Microalgas/enzimologia , Estramenópilas/enzimologia , Biocatálise , Membrana Celular/enzimologia , Estabilidade Enzimática , Enzimas/metabolismo , Ésteres/química , Etanol/química , Ácidos Graxos/química , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Metanol/química , Microalgas/química , Palmitatos/química , Estramenópilas/química , Temperatura
11.
Nat Biomed Eng ; 2(1): 49, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-31015658

RESUMO

In the version of this Article originally published, in Fig. 1c-e, on the x axes, the lines labelled 'Aß42' and 'Aß42(F19S;L34P)' grouped the data incorrectly; the line labelled Aß42 should have grouped the data for Random 1-2 and Clones 1-10, and the line labelled Aß42(F19S;L34P) should have only grouped the data for Random 1-2 on the right end of the plots and blots. These figures have now been corrected in all versions of the Article.

12.
Nat Biomed Eng ; 1(10): 838-852, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31015593

RESUMO

Protein misfolding and aggregation are common pathological features of several human diseases, including Alzheimer's disease and type 2 diabetes. Here, we report an integrated and generalizable bacterial system for the facile discovery of chemical rescuers of disease-associated protein misfolding. In this system, large combinatorial libraries of macrocyclic molecules are biosynthesized in Escherichia coli cells and simultaneously screened for their ability to rescue pathogenic protein misfolding and aggregation using a flow cytometric assay. We demonstrate the effectiveness of this approach by identifying drug-like, head-to-tail cyclic peptides that modulate the aggregation of the Alzheimer's disease-associated amyloid ß peptide. Biochemical, biophysical and biological assays using isolated amyloid ß peptide, primary neurons and various established Alzheimer's disease nematode models showed that the selected macrocycles potently inhibit the formation of neurotoxic amyloid ß peptide aggregates. We also applied the system to the identification of misfolding rescuers of mutant Cu/Zn superoxide dismutase-an enzyme linked with inherited forms of amyotrophic lateral sclerosis. Overall, the system enables the identification of molecules with therapeutic potential for rescuing the misfolding of disease-associated polypeptides.

13.
ACS Synth Biol ; 6(2): 284-300, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27797488

RESUMO

Membrane proteins perform critical cellular functions in all living organisms and constitute major targets for drug discovery. Escherichia coli has been the most popular overexpression host for membrane protein biochemical/structural studies. Bacterial production of recombinant membrane proteins, however, is typically hampered by poor cellular accumulation and severe toxicity for the host, which leads to low final biomass and minute volumetric yields. In this work, we aimed to rewire the E. coli protein-producing machinery to withstand the toxicity caused by membrane protein overexpression in order to generate engineered bacterial strains with the ability to achieve high-level membrane protein production. To achieve this, we searched for bacterial genes whose coexpression can suppress membrane protein-induced toxicity and identified two highly potent effectors: the membrane-bound DnaK cochaperone DjlA, and the inhibitor of the mRNA-degrading activity of the E. coli RNase E, RraA. E. coli strains coexpressing either djlA or rraA, termed SuptoxD and SuptoxR, respectively, accumulated markedly higher levels of final biomass and produced dramatically enhanced yields for a variety of prokaryotic and eukaryotic recombinant membrane proteins. In all tested cases, either SuptoxD, or SuptoxR, or both, outperformed the capabilities of commercial strains frequently utilized for recombinant membrane protein production purposes.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas Recombinantes/genética , Biomassa , Endorribonucleases/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Proteínas de Choque Térmico HSP40/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética
14.
Sci Rep ; 6: 38886, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991516

RESUMO

Biocatalysts exerting activity against ester bonds have a broad range of applications in modern biotechnology. Here, we have identified a new esterolytic enzyme by screening a metagenomic sample collected from a hot spring in Kamchatka, Russia. Biochemical characterization of the new esterase, termed EstDZ2, revealed that it is highly active against medium chain fatty acid esters at temperatures between 25 and 60 °C and at pH values 7-8. The new enzyme is moderately thermostable with a half-life of more than six hours at 60 °C, but exhibits exquisite stability against high concentrations of organic solvents. Phylogenetic analysis indicated that EstDZ2 is likely an Acetothermia enzyme that belongs to a new family of bacterial esterases, for which we propose the index XV. One distinctive feature of this new family, is the presence of a conserved GHSAG catalytic motif. Multiple sequence alignment, coupled with computational modelling of the three-dimensional structure of EstDZ2, revealed that the enzyme lacks the largest part of the "cap" domain, whose extended structure is characteristic for the closely related Family IV esterases. Thus, EstDZ2 appears to be distinct from known related esterolytic enzymes, both in terms of sequence characteristics, as well as in terms of three-dimensional structure.


Assuntos
Proteínas de Bactérias , Esterases , Fontes Termais/microbiologia , Metagenômica , Microbiologia da Água , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Estabilidade Enzimática , Esterases/química , Esterases/genética , Sibéria
15.
Front Microbiol ; 7: 1779, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27899916

RESUMO

Lipolytic enzymes that retain high levels of catalytic activity when exposed to a variety of denaturing conditions are of high importance for a number of biotechnological applications. In this study, we aimed to identify new lipolytic enzymes, which are highly resistant to prolonged exposure to elevated temperatures. To achieve this, we searched for genes encoding for such proteins in the genomes of a microbial consortium residing in a hot spring located in China. After performing functional genomic screening on a bacterium of the genus Dictyoglomus, which was isolated from this hot spring following in situ enrichment, we identified a new esterolytic enzyme, termed EstDZ3. Detailed biochemical characterization of the recombinant enzyme, revealed that it constitutes a slightly alkalophilic and highly active esterase against esters of fatty acids with short to medium chain lengths. Importantly, EstDZ3 exhibits remarkable thermostability, as it retains high levels of catalytic activity after exposure to temperatures as high as 95°C for several hours. Furthermore, it exhibits very good stability against exposure to high concentrations of a variety of organic solvents. Interestingly, EstDZ3 was found to have very little similarity to previously characterized esterolytic enzymes. Computational modeling of the three-dimensional structure of this new enzyme predicted that it exhibits a typical α/ß hydrolase fold that seems to include a "subdomain insertion", which is similar to the one present in its closest homolog of known function and structure, the cinnamoyl esterase Lj0536 from Lactobacillus johnsonii. As it was found in the case of Lj0536, this structural feature is expected to be an important determinant of the catalytic properties of EstDZ3. The high levels of esterolytic activity of EstDZ3, combined with its remarkable thermostability and good stability against a range of organic solvents and other denaturing agents, render this new enzyme a candidate biocatalyst for high-temperature biotechnological applications.

16.
Eur J Med Chem ; 121: 143-157, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27240270

RESUMO

Modified purine derivatives exemplified by pyrazolopyrimidines have emerged as highly selective inhibitors of several angiogenic receptor tyrosine kinases. Herein, we designed and synthesized a new series of substituted pyrazolopyridines and explored their ability to influence crucial pro-angiogenic attributes of endothelial cells. Four of the synthesized compounds, possessing analogous substitution pattern, were found able to inhibit at low micromolar concentrations endothelial cell proliferation, migration and differentiation, constitutively or in response to Vascular Endothelial Growth Factor (VEGF) and to attenuate VEGF-induced phosphorylation of VEGF receptor-2 and downstream kinases AKT and ERK1/2. Administration of effective compounds in mice delayed the growth of syngeneic Lewis lung carcinoma transplants and reduced tumor microvessel density, without causing toxicity. Genome-wide microarray and gene ontology analyses of treated endothelial cells revealed derivative 18c as the most efficient modulator of gene expression and "mitotic cell cycle/cell division" along with "cholesterol biosynthesis" as the most significantly altered biological processes.


Assuntos
Inibidores da Angiogênese/síntese química , Neovascularização Patológica/tratamento farmacológico , Transcriptoma/efeitos dos fármacos , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Desenho de Fármacos , Células Endoteliais/efeitos dos fármacos , Humanos , Camundongos , Pirazóis/química , Pirazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
PLoS One ; 11(1): e0146454, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26741138

RESUMO

With the ultimate goal of identifying robust cellulases for industrial biocatalytic conversions, we have isolated and characterized a new thermostable and very halotolerant GH5 cellulase. This new enzyme, termed CelDZ1, was identified by bioinformatic analysis from the genome of a polysaccharide-enrichment culture isolate, initiated from material collected from an Icelandic hot spring. Biochemical characterization of CelDZ1 revealed that it is a glycoside hydrolase with optimal activity at 70°C and pH 5.0 that exhibits good thermostability, high halotolerance at near-saturating salt concentrations, and resistance towards metal ions and other denaturing agents. X-ray crystallography of the new enzyme showed that CelDZ1 is the first reported cellulase structure that lacks the defined sugar-binding 2 subsite and revealed structural features which provide potential explanations of its biochemical characteristics.


Assuntos
Proteínas de Bactérias/genética , Celulase/genética , Thermoanaerobacter/enzimologia , Proteínas de Bactérias/química , Domínio Catalítico , Celulase/química , Celulose/química , Cloretos/química , Cristalografia por Raios X , Estabilidade Enzimática , Fontes Termais/microbiologia , Temperatura Alta , Concentração de Íons de Hidrogênio , Islândia , Cinética , Modelos Moleculares , Tolerância ao Sal , Especificidade por Substrato , Thermoanaerobacter/genética
18.
Front Cell Dev Biol ; 2: 70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25478562

RESUMO

The rapid evolution of all sequencing technologies, described by the term Next Generation Sequencing (NGS), have revolutionized metagenomic analysis. They constitute a combination of high-throughput analytical protocols, coupled to delicate measuring techniques, in order to potentially discover, properly assemble and map allelic sequences to the correct genomes, achieving particularly high yields for only a fraction of the cost of traditional processes (i.e., Sanger). From a bioinformatic perspective, this boils down to many GB of data being generated from each single sequencing experiment, rendering the management or even the storage, critical bottlenecks with respect to the overall analytical endeavor. The enormous complexity is even more aggravated by the versatility of the processing steps available, represented by the numerous bioinformatic tools that are essential, for each analytical task, in order to fully unveil the genetic content of a metagenomic dataset. These disparate tasks range from simple, nonetheless non-trivial, quality control of raw data to exceptionally complex protein annotation procedures, requesting a high level of expertise for their proper application or the neat implementation of the whole workflow. Furthermore, a bioinformatic analysis of such scale, requires grand computational resources, imposing as the sole realistic solution, the utilization of cloud computing infrastructures. In this review article we discuss different, integrative, bioinformatic solutions available, which address the aforementioned issues, by performing a critical assessment of the available automated pipelines for data management, quality control, and annotation of metagenomic data, embracing various, major sequencing technologies and applications.

19.
Int J Mol Sci ; 14(10): 20256-81, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24152440

RESUMO

Post-transcriptional regulatory networks are dependent on the interplay of many RNA-binding proteins having a major role in mRNA processing events in mammals. We have been interested in the concerted action of the two RNA-binding proteins hnRNP A1 and HuR, both stable components of immunoselected hnRNP complexes and having a major nuclear localization. Specifically, we present here the application of the RNA-immunoprecipitation (RIP)-Chip technology to identify a population of nuclear transcripts associated with hnRNP A1-RNPs as isolated from the nuclear extract of either HuR WT or HuR-depleted (KO) mouse embryonic fibroblast (MEF) cells. The outcome of this analysis was a list of target genes regulated via HuR for their association (either increased or reduced) with the nuclear hnRNP A1-RNP complexes. Real time PCR analysis was applied to validate a selected number of nuclear mRNA transcripts, as well as to identify pre-spliced transcripts (in addition to their mature mRNA counterpart) within the isolated nuclear hnRNP A1-RNPs. The differentially enriched mRNAs were found to belong to GO categories relevant to biological processes anticipated for hnRNP A1 and HuR (such as transport, transcription, translation, apoptosis and cell cycle) indicating their concerted function in mRNA metabolism.


Assuntos
Proteínas ELAV/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas ELAV/metabolismo , Fibroblastos/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Camundongos , Proteínas de Ligação a RNA/metabolismo
20.
Adv Bioinformatics ; 2012: 453513, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23193398

RESUMO

Atherosclerosis is a multifactorial disease involving a lot of genes and proteins recruited throughout its manifestation. The present study aims to exploit bioinformatic tools in order to analyze microarray data of atherosclerotic aortic lesions of ApoE knockout mice, a model widely used in atherosclerosis research. In particular, a dynamic analysis was performed among young and aged animals, resulting in a list of 852 significantly altered genes. Pathway analysis indicated alterations in critical cellular processes related to cell communication and signal transduction, immune response, lipid transport, and metabolism. Cluster analysis partitioned the significantly differentiated genes in three major clusters of similar expression profile. Promoter analysis applied to functional related groups of the same cluster revealed shared putative cis-elements potentially contributing to a common regulatory mechanism. Finally, by reverse engineering the functional relevance of differentially expressed genes with specific cellular pathways, putative genes acting as hubs, were identified, linking functionally disparate cellular processes in the context of traditional molecular description.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA