RESUMO
The contribution of ships to the microbial faecal pollution status of water bodies is largely unknown but frequently of human health concern. No methodology for a comprehensive and target-orientated system analysis was available so far. We developed a novel approach for integrated and multistage impact evaluation. The approach includes, i) theoretical faecal pollution source profiling (PSP, i.e., size and pollution capacity estimation from municipal vs. ship sewage disposal) for impact scenario estimation and hypothesis generation, ii) high-resolution field assessment of faecal pollution levels and chemo-physical water quality at the selected river reaches, using standardized faecal indicators (cultivation-based) and genetic microbial source tracking markers (qPCR-based), and iii) integrated statistical analyses of the observed faecal pollution and the number of ships assessed by satellite-based automated ship tracking (i.e., automated identification system, AIS) at local and regional scales. The new approach was realised at a 230 km long Danube River reach in Austria, enabling detailed understanding of the complex pollution characteristics (i.e., longitudinal/cross-sectional river and upstream/downstream docking area analysis). Faecal impact of navigation was demonstrated to be remarkably low at regional and local scale (despite a high local contamination capacity), indicating predominantly correct disposal practices during the investigated period. Nonetheless, faecal emissions were sensitively traceable, attributable to the ship category (discriminated types: cruise, passenger and freight ships) and individual vessels (docking time analysis) at one docking area by the link with AIS data. The new innovative and sensitive approach is transferrable to any water body worldwide with available ship-tracking data, supporting target-orientated monitoring and evidence-based management practices.
Assuntos
Monitoramento Ambiental , Fezes , Rios , Fezes/química , Rios/química , Monitoramento Ambiental/métodos , Poluição da Água/análise , Navios , Qualidade da Água , ÁustriaRESUMO
Acting through a combination of direct and indirect pathogen clearance mechanisms, blood-derived antimicrobial compounds (AMCs) play a pivotal role in innate immunity, safeguarding the host against invading microorganisms. Besides their antimicrobial activity, some AMCs can neutralize endotoxins, preventing their interaction with immune cells and avoiding an excessive inflammatory response. In this study, we aimed to investigate the influence of unfractionated heparin, a polyanionic drug clinically used as anticoagulant, on the endotoxin-neutralizing and antibacterial activity of blood-derived AMCs. Serum samples from healthy donors were pre-incubated with increasing concentrations of heparin for different time periods and tested against pathogenic bacteria (Acinetobacter baumannii, Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus) and endotoxins from E. coli, K. pneumoniae, and P. aeruginosa. Heparin dose-dependently decreased the activity of blood-derived AMCs. Consequently, pre-incubation with heparin led to increased activity of LPS and higher values of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6). Accordingly, higher concentrations of A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa were observed as well. These findings underscore the neutralizing effect of unfractionated heparin on blood-derived AMCs in vitro and may lead to alternative affinity techniques for isolating and characterizing novel AMCs with the potential for clinical translation.
Assuntos
Anti-Infecciosos , Heparina , Heparina/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Endotoxinas/farmacologia , Klebsiella pneumoniaeRESUMO
Running cold and hot water in buildings is a widely established commodity. However, interests regarding hygiene and microbiological aspects had so far been focussed on cold water. Little attention has been given to the microbiology of domestic hot-water installations (DHWIs), except for aspects of pathogenic Legionella. World-wide, regulations consider hot (or warm) water as 'heated drinking water' that must comply (cold) drinking water (DW) standards. However, the few reports that exist indicate presence and growth of microbial flora in DHWIs, even when supplied with water with disinfectant residual. Using flow cytometric (FCM) total cell counting (TCC), FCM-fingerprinting, and 16S rRNA-gene-based metagenomic analysis, the characteristics and composition of bacterial communities in cold drinking water (DW) and hot water from associated boilers (operating at 50 - 60 °C) was studied in 14 selected inhouse DW installations located in Switzerland and Austria. A sampling strategy was applied that ensured access to the bulk water phase of both, supplied cold DW and produced hot boiler water. Generally, 1.3- to 8-fold enhanced TCCs were recorded in hot water compared to those in the supplied cold DW. FCM-fingerprints of cold and corresponding hot water from individual buildings indicated different composition of cold- and hot-water microbial floras. Also, hot waters from each of the boilers sampled had its own individual FCM-fingerprint. 16S rRNA-gene-based metagenomic analysis confirmed the marked differences in composition of microbiomes. E.g., in three neighbouring houses supplied from the same public network pipe each hot-water boiler contained its own thermophilic bacterial flora. Generally, bacterial diversity in cold DW was broad, that in hot water was restricted, with mostly thermophilic strains from the families Hydrogenophilaceae, Nitrosomonadaceae and Thermaceae dominating. Batch growth assays, consisting of cold DW heated up to 50 - 60 °C and inoculated with hot water, resulted in immediate cell growth with doubling times between 5 and 10 h. When cold DW was used as an inoculum no significant growth was observed. Even boilers supplied with UVC-treated cold DW contained an actively growing microbial flora, suggesting such hot-water systems as autonomously operating, thermophilic bioreactors. The generation of assimilable organic carbon from dissolved organic carbon due to heating appears to be the driver for growth of thermophilic microbial communities. Our report suggests that a man-made microbial ecosystem, very close to us all and of potential hygienic importance, may have been overlooked so far. Despite consumers having been exposed to microbial hot-water flora for a long time, with no major pathogens so far been associated specifically with hot-water usage (except for Legionella), the role of harmless thermophiles and their interaction with potential human pathogens able to grow at elevated temperatures in DHWIs remains to be investigated.
Assuntos
Água Potável , Legionella , Humanos , Água Potável/microbiologia , RNA Ribossômico 16S , Ecossistema , Abastecimento de Água , Bactérias/genética , Microbiologia da ÁguaRESUMO
The global spread of antimicrobial resistance (AMR) in the environment is a growing health threat. Large rivers are of particular concern as they are highly impacted by wastewater discharge while being vital lifelines serving various human needs. A comprehensive understanding of occurrence, spread and key drivers of AMR along whole river courses is largely lacking. We provide a holistic approach by studying spatiotemporal patterns and hotspots of antibiotic resistance genes (ARGs) along 2311 km of the navigable Danube River, combining a longitudinal and temporal monitoring campaign. The integration of advanced faecal pollution diagnostics and environmental and chemical key parameters allowed linking ARG concentrations to the major pollution sources and explaining the observed patterns. Nine AMR markers, including genes conferring resistance to five different antibiotic classes of clinical and environmental relevance, and one integrase gene were determined by probe-based qPCR. All AMR targets could be quantified in Danube River water, with intI1 and sul1 being ubiquitously abundant, qnrS, tetM, blaTEM with intermediate abundance and blaOXA-48like, blaCTX-M-1 group, blaCTX-M-9 group and blaKPC genes with rare occurrence. Human faecal pollution from municipal wastewater discharges was the dominant factor shaping ARG patterns along the Danube River. Other significant correlations of specific ARGs were observed with discharge, certain metals and pesticides. In contrast, intI1 was not associated with wastewater but was already established in the water microbiome. Animal contamination was detected only sporadically and was correlated with ARGs only in the temporal sampling set. During temporal monitoring, an extraordinary hotspot was identified emphasizing the variability within natural waters. This study provides the first comprehensive baseline concentrations of ARGs in the Danube River and lays the foundation for monitoring future trends and evaluating potential reduction measures. The applided holistic approach proved to be a valuable methodological contribution towards a better understanding of the environmental occurrence of AMR.
Assuntos
Genes Bacterianos , Rios , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/análise , Águas Residuárias , Resistência Microbiana a Medicamentos/genética , Água/análiseRESUMO
Vibrio cholerae, an important human pathogen, is naturally occurring in specific aquatic ecosystems. With very few exceptions, only the cholera-toxigenic strains belonging to the serogroups O1 and O139 are responsible for severe cholera outbreaks with epidemic or pandemic potential. All other nontoxigenic, non-O1/non-O139 V. cholerae (NTVC) strains may cause various other diseases, such as mild to severe infections of the ears, of the gastrointestinal and urinary tracts as well as wound and bloodstream infections. Older, immunocompromised people and patients with specific preconditions have an elevated risk. In recent years, worldwide reports demonstrated that NTVC infections are on the rise, caused amongst others by elevated water temperatures due to global warming.The aim of this review is to summarize the knowledge gained during the past two decades on V. cholerae infections and its occurrence in bathing waters in Austria, with a special focus on the lake Neusiedler See. We investigated whether NTVC infections have increased and which specific environmental conditions favor the occurrence of NTVC. We present an overview of state of the art methods that are currently available for clinical and environmental diagnostics. A preliminary public health risk assessment concerning NTVC infections related to the Neusiedler See was established. In order to raise awareness of healthcare professionals for NTVC infections, typical symptoms, possible treatment options and the antibiotic resistance status of Austrian NTVC isolates are discussed.
Assuntos
Cólera , Vibrio cholerae , Humanos , Cólera/epidemiologia , Áustria/epidemiologia , EcossistemaRESUMO
The impacts of nucleic acid-based methods - such as PCR and sequencing - to detect and analyze indicators, genetic markers or molecular signatures of microbial faecal pollution in health-related water quality research were assessed by rigorous literature analysis. A wide range of application areas and study designs has been identified since the first application more than 30 years ago (>1100 publications). Given the consistency of methods and assessment types, we suggest defining this emerging part of science as a new discipline: genetic faecal pollution diagnostics (GFPD) in health-related microbial water quality analysis. Undoubtedly, GFPD has already revolutionized faecal pollution detection (i.e., traditional or alternative general faecal indicator/marker analysis) and microbial source tracking (i.e., host-associated faecal indicator/marker analysis), the current core applications. GFPD is also expanding to many other research areas, including infection and health risk assessment, evaluation of microbial water treatment, and support of wastewater surveillance. In addition, storage of DNA extracts allows for biobanking, which opens up new perspectives. The tools of GFPD can be combined with cultivation-based standardized faecal indicator enumeration, pathogen detection, and various environmental data types, in an integrated data analysis approach. This comprehensive meta-analysis provides the scientific status quo of this field, including trend analyses and literature statistics, outlining identified application areas, and discusses the benefits and challenges of nucleic acid-based analysis in GFPD.
Assuntos
Ácidos Nucleicos , Poluição da Água , Poluição da Água/análise , Qualidade da Água , Bancos de Espécimes Biológicos , Águas Residuárias , Monitoramento Ambiental/métodos , Vigilância Epidemiológica Baseada em Águas Residuárias , Microbiologia da Água , FezesRESUMO
Vibrio cholerae are natural inhabitants of specific aquatic environments. Strains not belonging to serogroups O1 and O139 are usually unable to produce cholera toxin and cause cholera. However, non-toxigenic V. cholerae (NTVC) are able to cause a variety of mild-to-severe human infections (via seafood consumption or recreational activities). The number of unreported cases is considered substantial, as NTVC infections are not notifiable and physicians are mostly unaware of this pathogen. In the northern hemisphere, NTVC infections have been reported to increase due to global warming. In Eastern Europe, climatic and geological conditions favour the existence of inland water-bodies harbouring NTVC. We thus investigated the occurrence of NTVC in nine Serbian natural and artificial lakes and ponds, many of them used for fishing and bathing. With the exception of one highly saline lake, all investigated water-bodies harboured NTVC, ranging from 5.4 × 101 to 1.86 × 104 CFU and 4.5 × 102 to 5.6 × 106 genomic units per 100 ml. The maximum values observed were in the range of bathing waters in other countries, where infections have been reported. Interestingly, 7 out of 39 fully sequenced presumptive V. cholerae isolates were assigned as V. paracholerae, a recently described sister species of V. cholerae. Some clones and sublineages of both V. cholerae and V. paracholerae were shared by different environments indicating an exchange of strains over long distances. Important pathogenicity factors such as hlyA, toxR, and ompU were present in both species. Seasonal monitoring of ponds/lakes used for recreation in Serbia is thus recommended to be prepared for potential occurrence of infections promoted by climate change-induced rise in water temperatures.
Assuntos
Vibrio cholerae , Humanos , Vibrio cholerae/genética , Lagos , Sérvia/epidemiologia , Lagoas , ÁguaRESUMO
DNA aptamers generated by cell-SELEX against bacterial cells have gained increased interest as novel and cost-effective affinity reagents for cell labelling, imaging and biosensing. Here we describe the selection and identification of DNA aptamers for bacterial cells using a combined approach based on cell-SELEX, state-of-the-art applications of quantitative real-time PCR (qPCR), next-generation sequencing (NGS) and bioinformatic data analysis. This approach is demonstrated on Enterococcus faecalis (E. faecalis), which served as target in eleven rounds of cell-SELEX with multiple subtractive counter-selections against non-target species. During the selection, we applied qPCR-based analyses to evaluate the ssDNA pool size and remelting curve analysis of qPCR amplicons to monitor changes in pool diversity and sequence enrichment. Based on NGS-derived data, we identified 16 aptamer candidates. Among these, aptamer EF508 exhibited high binding affinity to E. faecalis cells (KD-value: 37 nM) and successfully discriminated E. faecalis from 20 different Enterococcus and non-Enterococcus spp. Our results demonstrate that this combined approach enabled the rapid and efficient identification of an aptamer with both high affinity and high specificity. Furthermore, the applied monitoring and assessment techniques provide insight into the selection process and can be highly useful to study and improve experimental cell-SELEX designs to increase selection efficiency.
Assuntos
Aptâmeros de Nucleotídeos/genética , Enterococcus faecalis/citologia , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real , Técnica de Seleção de Aptâmeros/métodos , DNA de Cadeia Simples/genéticaRESUMO
During recent years, mid-infrared (MIR) spectroscopy has matured into a versatile and powerful sensing tool for a wide variety of analytical sensing tasks. Attenuated total reflection (ATR) techniques have gained increased interest due to their potential to perform non-destructive sensing tasks close to real time. In ATR, the essential component is the sampling interface, i.e., the ATR waveguide and its material properties interfacing the sample with the evanescent field ensuring efficient photon-molecule interaction. Gallium arsenide (GaAs) is a versatile alternative material vs. commonly used ATR waveguide materials including but not limited to silicon, zinc selenide, and diamond. GaAs-based internal reflection elements (IREs) are a new generation of semiconductor-based waveguides and are herein used for the first time in direct spectroscopic applications combined with conventional Fourier transform infrared (FT-IR) spectroscopy. Next to the characterization of the ATR waveguide, exemplary surface reactions were monitored, and trace-level analyte detection via signal amplification taking advantage of surface-enhanced infrared absorption (SEIRA) effects was demonstrated. As an example of real-world relevance, the mycotoxin aflatoxin B1 (AFB1) was used as a model analyte in food and feed safety analysis. Graphical abstract.
Assuntos
Arsenicais/química , Gálio/química , Semicondutores , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Aflatoxina B1/análise , Desenho de Equipamento , Análise de Alimentos/instrumentação , Propriedades de SuperfícieRESUMO
The extraction of nucleic acids from microorganisms for subsequent molecular diagnostic applications is still a tedious and time-consuming procedure. We developed a method for the rapid preparation of genomic DNA from bacteria based on hydrophilic ionic liquids (ILs). First, we tested eight ILs in different buffer systems for their inhibitory effects on quantitative PCR. The cell lysis potential of different IL/buffer combinations was assessed by application on Enterococcus faecalis as a model organism for Gram-positive bacteria. The two best ILs, choline hexanoate and 1-ethyl-3-methylimidazolium acetate, were compared with the reference enzymatic method and two commercial DNA extraction kits. All methods were evaluated on four Gram-positive and four Gram-negative bacterial species that are highly relevant for environmental, food, or clinical diagnostics. In comparison to the reference method, extraction yields of the IL-based procedure were within one order of magnitude for most of the strains. The final protocol for DNA extraction using the two ILs is very low-cost, avoids the use of hazardous chemicals and can be performed in five minutes on a simple heating block. This makes the method ideal for high sample throughput and offers the opportunity for DNA extraction from bacteria in resource-limited settings or even in the field.
Assuntos
Bactérias/genética , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/genética , Enterococcus faecalis/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Interações Hidrofóbicas e Hidrofílicas , Líquidos Iônicos , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Over the last decades, various PCR-based methods have been proposed that can identify sources of faecal pollution in environmental waters. These microbial source tracking (MST) methods are powerful tools to manage water quality and support public health risk assessment. However, their application is limited by the lack of specialized equipment and trained personnel in laboratories performing microbiological water quality assessment. Here, we describe a novel molecular method that combines helicase-dependent amplification (HDA) with a strip test for detecting ruminant faecal pollution sources. Unlike quantitative PCR (qPCR), the developed HDA-strip assay only requires a heating block to amplify the ruminant-associated Bacteroidetes 16S rRNA marker (BacR). Following HDA, the reaction mixture can be directly applied onto the test strip, which detects and displays the amplification products by marker-specific hybridization probes via an on-strip colorimetric reaction. The entire assay takes two hours and demands no extensive practical training. Furthermore, the BacR HDA-strip assay achieved comparable results in head-to-head performance tests with the qPCR reference, in which we investigated source-sensitivity and source-specificity, the analytical limit of detection, and the sample limit of detection. Although this approach only yields qualitative results, it can pave a way for future simple-to-use MST screening tools.
Assuntos
Bacteroidetes/genética , DNA Helicases/química , DNA Bacteriano/genética , Técnicas de Amplificação de Ácido Nucleico , RNA Ribossômico 16S/genéticaRESUMO
Molecular diagnostic tools in the field of food and water quality analysis are becoming increasingly widespread. Usually, based on DNA amplification techniques such as polymerase chain reaction (PCR), these methods are highly sensitive and versatile but require well-equipped laboratories and trained personnel. To reduce analysis time and avoid expensive equipment, isothermal DNA amplification methods for detecting various target organisms have been developed. However, to make molecular diagnostics suitable for low-resource settings and in-field applications, it is crucial to continuously adapt the working steps associated with DNA amplification, namely sample preparation, DNA extraction, and visualization of the results. Many novel approaches have been evaluated in recent years to tackle these challenges, e.g., the use of ionic liquids for the rapid isolation of nucleic acids from organisms relevant for food and water analysis or the integration of entire analytical workflows on microfluidic chips. In any event, the future of applications in the field of isothermal amplification will probably lie in ready-to-use cartridges combined with affordable handheld devices for on-site analysis. This trend article aims to make prospective users more familiar with this technology and its potential for moving molecular diagnostics from the laboratory to the field. Graphical abstract á .
Assuntos
DNA/genética , Análise de Alimentos , Reação em Cadeia da Polimerase/métodos , Qualidade da Água , Análise Custo-Benefício , Líquidos Iônicos , Dispositivos Lab-On-A-Chip , Reação em Cadeia da Polimerase/economia , Microbiologia da ÁguaRESUMO
Faecal pollution of water and the resulting potential presence of human enteric pathogens is a predominant threat to public health. Microbiological water quality can be assessed by the detection of standard faecal indicator bacteria (SFIB) such as E. coli or certain Enterococcus species. In recent years, isothermal amplification methods have become a useful alternative to polymerase chain reaction (PCR), allowing molecular diagnostics with simple or no instrumentation. In this study, a novel screening method for the molecular detection of Enterococcus spp. by loop-mediated isothermal amplification (LAMP) is described. A set of six specific LAMP primers was designed to amplify a diagnostic fragment of the Enterococcus 23S rRNA gene, which is present in several enterococcal species targeted by quantitative PCR (qPCR), which is the standard technique recommended by the US Environmental Protection Agency. Sensitivity and specificity tests were performed using a set of 30 Enterococcus and non-target bacterial reference strains. It is shown that LAMP is equally sensitive and even more specific than the qPCR assay. A dilution series of Enterococcus faecalis DNA revealed that the LAMP method can reliably detect 130 DNA target copies per reaction within 45 min. Additionally, enterococci isolated from Austrian surface waterbodies, as well as a set of DNA extracts from environmental waters, were tested. Contingency analysis demonstrated a highly significant correlation between the results of the developed LAMP assay and the reference qPCR method. Furthermore, a simple staining procedure with a fluorescence dye demonstrated the identification of amplified products by eye. In conclusion, this method is an important component for the efficient screening and testing of water samples in low-resource settings lacking sophisticated laboratory equipment and highly trained personnel, requiring only a simple heating block.
Assuntos
Enterococcus/genética , Técnicas de Amplificação de Ácido Nucleico , Áustria , Primers do DNA , Monitoramento Ambiental , Escherichia coli , Humanos , Sensibilidade e Especificidade , Água , Microbiologia da ÁguaRESUMO
We report a novel molecular assay, based on helicase-dependent amplification (HDA), for the detection of enterococci as markers for fecal pollution in water. This isothermal assay targets the same Enterococcus 23S rRNA gene region as the existing quantitative polymerase chain reaction (qPCR) assays of U.S. Environmental Protection Agency Methods 1611 and 1609 but can be entirely performed on a simple heating block. The developed Enterococcus HDA assay successfully discriminated 15 enterococcal from 15 non-enterococcal reference strains and reliably detected 48 environmental isolates of enterococci. The limit of detection was 25 target copies per reaction, only 3 times higher than that of qPCR. The applicability of the assay was tested on 30 environmental water sample DNA extracts, simulating a gradient of fecal pollution. Despite the isothermal nature of the reaction, the HDA results were consistent with those of the qPCR reference. Given this performance, we conclude that the developed Enterococcus HDA assay has great potential as a qualitative molecular screening method for resource-limited settings when combined with compatible up- and downstream processes. This amplification strategy can pave the way for developing a new generation of rapid, low-cost, and field-deployable molecular diagnostic tools for water quality monitoring.
Assuntos
Enterococcus , Reação em Cadeia da Polimerase , Microbiologia da Água , Meio Ambiente , FezesRESUMO
In 2003 the European Commission introduced a 0.9% threshold for food and feed products containing genetically modified organism (GMO)-derived components. For commodities containing GMO contents higher than this threshold, labelling is mandatory. To provide a DNA-based rapid and simple detection method suitable for high-throughput screening of GMOs, several isothermal amplification approaches for the 35S promoter were tested: strand displacement amplification, nicking-enzyme amplification reaction, rolling circle amplification, loop-mediated isothermal amplification (LAMP) and helicase-dependent amplification (HDA). The assays developed were tested for specificity in order to distinguish between samples containing genetically modified (GM) maize and non-GM maize. For those assays capable of this discrimination, tests were performed to determine the lower limit of detection. A false-negative rate was determined to rule out whether GMO-positive samples were incorrectly classified as GMO-negative. A robustness test was performed to show reliable detection independent from the instrument used for amplification. The analysis of three GM maize lines showed that only LAMP and HDA were able to differentiate between the GMOs MON810, NK603, and Bt11 and non-GM maize. Furthermore, with the HDA assay it was possible to realize a detection limit as low as 0.5%. A false-negative rate of only 5% for 1% GM maize for all three maize lines shows that HDA has the potential to be used as an alternative strategy for the detection of transgenic maize. All results obtained with the LAMP and HDA assays were compared with the results obtained with a previously reported real-time PCR assay for the 35S promoter in transgenic maize. This study presents two new screening assays for detection of the 35S promoter in transgenic maize by applying the isothermal amplification approaches HDA and LAMP.