Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Heart J Digit Health ; 5(5): 542-550, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39318697

RESUMO

Aims: Coronary artery disease (CAD) is a highly prevalent disease with modifiable risk factors. In patients with suspected obstructive CAD, evaluating the pre-test probability model is crucial for diagnosis, although its accuracy remains controversial. Machine learning (ML) predictive models can help clinicians detect CAD early and improve outcomes. This study aimed to identify early-stage CAD using ML in conjunction with a panel of clinical and laboratory tests. Methods and results: The study sample included 3316 patients enrolled in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. A comprehensive array of attributes was considered, and an ML pipeline was developed. Subsequently, we utilized five approaches to generating high-quality virtual patient data to improve the performance of the artificial intelligence models. An extension study was carried out using data from the Young Finns Study (YFS) to assess the results' generalizability. Upon applying virtual augmented data, accuracy increased by approximately 5%, from 0.75 to -0.79 for random forests (RFs), and from 0.76 to -0.80 for Gradient Boosting (GB). Sensitivity showed a significant boost for RFs, rising by about 9.4% (0.81-0.89), while GB exhibited a 4.8% increase (0.83-0.87). Specificity showed a significant boost for RFs, rising by ∼24% (from 0.55 to 0.70), while GB exhibited a 37% increase (from 0.51 to 0.74). The extension analysis aligned with the initial study. Conclusion: Accurate predictions of angiographic CAD can be obtained using a set of routine laboratory markers, age, sex, and smoking status, holding the potential to limit the need for invasive diagnostic techniques. The extension analysis in the YFS demonstrated the potential of these findings in a younger population, and it confirmed applicability to atherosclerotic vascular disease.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38082601

RESUMO

An emerging area in data science that has lately gained attention is the virtual population (VP) and synthetic data generation. This field has the potential to significantly affect the healthcare industry by providing a means to augment clinical research databases that have a shortage of subjects. The current study provides a comparative analysis of five distinct approaches for creating virtual data populations from real patient data. The data set utilized for the current analyses involved clinical data collected among patients scheduled for elective coronary artery bypass graft surgery (CABG). To that end, the five computational techniques employed to augment the given dataset were: (i) Tabular Preset, (ii) Gaussian Copula Model (iii) Generative Adversarial Network based (GAN) Deep Learning data synthesizer (CTGAN), (iv) a variation of the CTGAN Model (Copula GAN), and (v) VAE-based Deep Learning data synthesizer (TVAE). The performance of these techniques was assessed against their effectiveness in producing high-quality virtual data. For this purpose, dataset correlation matrices, cosine similarity distance, density histograms, and kernel density estimation are employed to perform a comparative analysis of each attribute and the respective synthetic equivalent. Our findings demonstrate that Gaussian Copula Model prevails in creating virtual data with consistent distributions (Kolmogorov-Smirnov (KS) and Chi-Squared (CS) tests equal to 0.9 and 0.98, respectively) and correlation patterns (average cosine similarity equals to 0.95).Clinical Relevance- It has been shown that the use of a VP can increase the predictive performance of a ML model, i.e., above using a smaller non-augmented population.


Assuntos
Ponte de Artéria Coronária , Coração , Humanos , Doença Crônica , Confiabilidade dos Dados , Ciência de Dados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA