Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 23(1): 73, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867299

RESUMO

Pork is of great importance in world trade and represents the largest source of fatty acids in the human diet. Lipid sources such as soybean oil (SOY), canola (CO), and fish oil (FO) are used in pig diets and influence blood parameters and the ratio of deposited fatty acids. In this study, the main objective was to evaluate changes in gene expression in porcine skeletal muscle tissue resulting from the dietary oil sources and to identify metabolic pathways and biological process networks through RNA-Seq. The addition of FO in the diet of pigs led to intramuscular lipid with a higher FA profile composition of C20:5 n-3, C22:6 n-3, and SFA (C16:0 and C18:0). Blood parameters for the FO group showed lower cholesterol and HDL content compared with CO and SOY groups. Skeletal muscle transcriptome analyses revealed 65 differentially expressed genes (DEG, FDR 10%) between CO vs SOY, and 32 DEG for CO vs FO, and 531 DEG for SOY vs FO comparison. Several genes, including AZGP1, PDE3B, APOE, PLIN1, and LIPS, were found to be down-regulated in the diet of the SOY group compared to the FO group. The enrichment analysis revealed DEG involved in lipid metabolism, metabolic diseases, and inflammation between the oil groups, with specific gene functions in each group and altered blood parameters. The results provide mechanisms to help us understand the behavior of genes according to fatty acids.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Animais , Masculino , Suínos , Ácidos Graxos , Inflamação , Músculo Esquelético , Óleo de Soja
2.
BMC Genomics ; 24(1): 91, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855067

RESUMO

BACKGROUND: The high similarity in anatomical and neurophysiological processes between pigs and humans make pigs an excellent model for metabolic diseases and neurological disorders. Lipids are essential for brain structure and function, and the polyunsaturated fatty acids (PUFA) have anti-inflammatory and positive effects against cognitive dysfunction in neurodegenerative diseases. Nutrigenomics studies involving pigs and fatty acids (FA) may help us in better understanding important biological processes. In this study, the main goal was to evaluate the effect of different levels of dietary soybean oil on the lipid profile and transcriptome in pigs' brain tissue. RESULTS: Thirty-six male Large White pigs were used in a 98-day study using two experimental diets corn-soybean meal diet containing 1.5% soybean oil (SOY1.5) and corn-soybean meal diet containing 3.0% soybean oil (SOY3.0). No differences were found for the brain total lipid content and FA profile between the different levels of soybean oil. For differential expression analysis, using the DESeq2 statistical package, a total of 34 differentially expressed genes (DEG, FDR-corrected p-value < 0.05) were identified. Of these 34 DEG, 25 are known-genes, of which 11 were up-regulated (log2 fold change ranging from + 0.25 to + 2.93) and 14 were down-regulated (log2 fold change ranging from - 3.43 to -0.36) for the SOY1.5 group compared to SOY3.0. For the functional enrichment analysis performed using MetaCore with the 34 DEG, four pathway maps were identified (p-value < 0.05), related to the ALOX15B (log2 fold change - 1.489), CALB1 (log2 fold change - 3.431) and CAST (log2 fold change + 0.421) genes. A "calcium transport" network (p-value = 2.303e-2), related to the CAST and CALB1 genes, was also identified. CONCLUSION: The results found in this study contribute to understanding the pathways and networks associated with processes involved in intracellular calcium, lipid metabolism, and oxidative processes in the brain tissue. Moreover, these results may help a better comprehension of the modulating effects of soybean oil and its FA composition on processes and diseases affecting the brain tissue.


Assuntos
Óleo de Soja , Transcriptoma , Animais , Masculino , Encéfalo , Cálcio , Dieta/veterinária , Ácidos Graxos , Óleo de Soja/farmacologia , Suínos
3.
Front Genet ; 14: 1053021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816031

RESUMO

Pigs (Sus scrofa) are an animal model for metabolic diseases in humans. Pork is an important source of fatty acids (FAs) in the human diet, as it is one of the most consumed meats worldwide. The effects of dietary inclusion of oils such as canola, fish, and soybean oils on pig gene expression are mostly unknown. Our objective was to evaluate FA composition, identify changes in gene expression in the liver of male pigs fed diets enriched with different FA profiles, and identify impacted metabolic pathways and gene networks to enlighten the biological mechanisms' variation. Large White male pigs were randomly allocated to one of three diets with 18 pigs in each; all diets comprised a base of corn and soybean meal to which either 3% of soybean oil (SOY), 3% canola oil (CO), or 3% fish oil (FO) was added for a 98-day trial during the growing and finishing phases. RNA sequencing was performed on the liver samples of each animal by Illumina technology for differential gene expression analyses, using the R package DESeq2. The diets modified the FA profile, mainly in relation to polyunsaturated and saturated FAs. Comparing SOY vs. FO, 143 differentially expressed genes (DEGs) were identified as being associated with metabolism, metabolic and neurodegenerative disease pathways, inflammatory processes, and immune response networks. Comparing CO vs. SOY, 148 DEGs were identified, with pathways related to FA oxidation, regulation of lipid metabolism, and metabolic and neurodegenerative diseases. Our results help explain the behavior of genes with differential expression in metabolic pathways resulting from feeding different types of oils in pig diets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA