RESUMO
Oncolytic viruses offer a promising approach to tumor treatment. These viruses not only have a direct lytic effect on tumor cells but can also modify the tumor microenvironment and activate antitumor immunity. Due to their high pathogenicity, flaviviruses have often been overlooked as potential antitumor agents. However, with recent advancements in genetic engineering techniques, an extensive history with vaccine strains, and the development of new attenuated vaccine strains, there has been a renewed interest in the Flavivirus genus. Flaviviruses can be genetically modified to express transgenes at acceptable levels, and the stability of such constructs has been greatly improving over the years. The key advantages of flaviviruses include their reproduction cycle occurring entirely within the cytoplasm (avoiding genome integration) and their ability to cross the blood-brain barrier, facilitating the systemic delivery of oncolytics against brain tumors. So far, the direct lytic effects and immunomodulatory activities of many flaviviruses have been widely studied in experimental animal models across various types of tumors. In this review, we delve into the findings of these studies and contemplate the promising potential of flaviviruses in oncolytic therapies.
Assuntos
Neoplasias Encefálicas , Flavivirus , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Flavivirus/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Neoplasias Encefálicas/terapia , Engenharia Genética , Microambiente TumoralRESUMO
The idea of using the lytic power of viruses against malignant cells has been entertained for many decades. However, oncolytic viruses gained broad attention as an emerging anti-cancer therapy only recently with the successful implementation of several oncolytic viruses to treat advanced melanoma. Here we review the history of oncolytic viruses in the Russian Federation and recent biotechnological advances in connection with the perspectives of their practical use against aggressive tumors such as glioblastoma or pancreatic cancer. A particular emphasis is made on novel applications of safe non-lytic virus-derived vectors armed with prodrug-converting enzyme transgenes. Rational improvement of oncotropism by conjugation with biopolymers and nanoformulations is also discussed.
Assuntos
Melanoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Vírus , Humanos , Vírus Oncolíticos/genéticaRESUMO
Current serological tests for the emerging tick-borne pathogen Borrelia miyamotoi lack diagnostic accuracy. To improve serodiagnosis, we investigated a protein array simultaneously screening for IgM and IgG reactivity against multiple recombinant B. miyamotoi antigens. The array included six B. miyamotoi antigens: glycerophosphodiester phosphodiesterase (GlpQ), multiple variable major proteins (Vmps), and flagellin. Sera included samples from cases of PCR-proven Borrelia miyamotoi disease (BMD), multiple potentially cross-reactive control groups (including patients with culture-proven Lyme borreliosis, confirmed Epstein-Barr virus, cytomegalovirus, or other spirochetal infections), and several healthy control groups from regions where Ixodes is endemic and regions where it is nonendemic. Based on receiver operating characteristic (ROC) analyses, the cutoff for reactivity per antigen was set at 5 µg/mL for IgM and IgG. The individual antigens demonstrated high sensitivity but relatively low specificity for both IgM and IgG. The best-performing single antigen (GlpQ) showed a sensitivity of 88.0% (95% confidence interval [CI], 78.9 to 93.5) and a specificity of 94.2% (95% CI, 92.7 to 95.6) for IgM/IgG. Applying the previous published diagnostic algorithm-defining seroreactivity as reactivity against GlpQ and any Vmp-revealed a significantly higher specificity of 98.5% (95% CI, 97.6 to 99.2) but a significantly lower sensitivity of 79.5% (95% CI, 69.3 to 87.0) for IgM/IgG compared to GlpQ alone. Therefore, we propose to define seroreactivity as reactivity against GlpQ and any Vmp or flagellin which resulted in a comparable sensitivity of 84.3% (95% CI, 74.7 to 90.8) and a significantly higher specificity of 97.9% (95% CI, 96.9 to 98.7) for IgM/IgG compared to GlpQ alone. In conclusion, we have developed and validated a novel serological tool to diagnose BMD that could be implemented in clinical practice and epidemiological studies. IMPORTANCE This paper describes the protein array as a novel serological test for the diagnosis of Borrelia miyamotoi disease (BMD), by reporting the methodology, the development of a diagnostic algorithm, and its extensive validation. With rising numbers of ticks and tick bites, tick-borne diseases, such as BMD, urgently deserve further societal and medical attention. B. miyamotoi is prevalent in Ixodes ticks across the northern hemisphere. Humans are exposed to, and infected by, B. miyamotoi and develop BMD in Asia, in North America, and to a lesser extent in Europe. However, the burden of infection and disease remains largely unknown, due to the noncharacteristic clinical presentation, together with the lack of awareness and availability of diagnostic tools. With this paper, we offer a novel diagnostic tool which will assist in assessing the burden of disease and could be implemented in clinical care.
Assuntos
Anticorpos Antibacterianos , Infecções por Borrelia , Borrelia , Ixodes , Animais , Humanos , Flagelina , Imunoglobulina G , Imunoglobulina M , Ixodes/microbiologia , Análise Serial de Proteínas , Infecções por Borrelia/imunologia , Anticorpos Antibacterianos/análiseRESUMO
BACKGROUND: The genus Borrelia comprises spirochaetal bacteria maintained in natural transmission cycles by tick vectors and vertebrate reservoir hosts. The main groups are represented by a species complex including the causative agents of Lyme borreliosis and relapsing fever group Borrelia. Borrelia miyamotoi belongs to the relapsing fever group of spirochetes and forms distinct populations in North America, Asia, and Europe. As all Borrelia species B. miyamotoi possess an unusual and complex genome consisting of a linear chromosome and a number of linear and circular plasmids. The species is considered an emerging human pathogen and an increasing number of human cases are being described in the Northern hemisphere. The aim of this study was to produce a high quality reference genome that will facilitate future studies into genetic differences between different populations and the genome plasticity of B. miyamotoi. RESULTS: We used multiple available sequencing methods, including Pacific Bioscience single-molecule real-time technology (SMRT) and Oxford Nanopore technology (ONT) supplemented with highly accurate Illumina sequences, to explore the suitability for whole genome assembly of the Russian B. miyamotoi isolate, Izh-4. Plasmids were typed according to their potential plasmid partitioning genes (PF32, 49, 50, 57/62). Comparing and combining results of both long-read (SMRT and ONT) and short-read methods (Illumina), we determined that the genome of the isolate Izh-4 consisted of one linear chromosome, 12 linear and two circular plasmids. Whilst the majority of plasmids had corresponding contigs in the Asian B. miyamotoi isolate FR64b, there were only four that matched plasmids of the North American isolate CT13-2396, indicating differences between B. miyamotoi populations. Several plasmids, e.g. lp41, lp29, lp23, and lp24, were found to carry variable major proteins. Amongst those were variable large proteins (Vlp) subtype Vlp-α, Vlp-γ, Vlp-δ and also Vlp-ß. Phylogenetic analysis of common plasmids types showed the uniqueness in Russian/Asian isolates of B. miyamotoi compared to other isolates. CONCLUSIONS: We here describe the genome of a Russian B. miyamotoi clinical isolate, providing a solid basis for future comparative genomics of B. miyamotoi isolates. This will be a great impetus for further basic, molecular and epidemiological research on this emerging tick-borne pathogen.
Assuntos
Borrelia/genética , Genoma Bacteriano/genética , Genômica/métodos , Plasmídeos/genética , Sequenciamento Completo do Genoma/métodos , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Borrelia/classificação , Borrelia/patogenicidade , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Humanos , Ixodes/microbiologia , Doença de Lyme/microbiologia , Filogenia , Febre Recorrente/microbiologia , Especificidade da EspécieRESUMO
Borrelia miyamotoi is an emerging relapsing fever (RF) Borrelia species that is reported to cause human disease in regions in which Lyme borreliosis is endemic. We recently showed that B. miyamotoi tick isolates are resistant to amoxicillin in vitro; however, clinical isolates have not been studied. Therefore, our aim was to show the antimicrobial susceptibility of recently obtained clinical isolates of B. miyamotoi A dilution series of various antibiotics was made in modified Kelly-Pettenkofer medium with 10% fetal calf serum. The susceptibilities of different B. miyamotoi clinical, B. miyamotoi tick, RF Borrelia, and Borrelia burgdorferisensu lato isolates were tested by measuring MICs through colorimetric changes and by counting motile spirochetes by dark-field microscopy after 72 h of incubation. The ceftriaxone and azithromycin MIC ranges of the six B. miyamotoi clinical isolates tested were 0.03 to 0.06 mg/liter and 0.0016 to 0.0032 mg/liter, respectively. These values are similar to MICs for RF Borrelia strains and B. miyamotoi tick isolates. All tested RF Borrelia strains were susceptible to doxycycline (microscopic MIC range, 0.0625 to 0.25 mg/liter). In contrast to the MICs of the tested B. burgdorferi sensu lato strains and in line with our previous findings, the amoxicillin MICs (range, 8 to 32 mg/liter) of all RF Borrelia strains, including B. miyamotoi clinical isolates, were above the clinical breakpoint for resistance (≤4 mg/liter). Clinical isolates of B. miyamotoi are highly susceptible to doxycycline, azithromycin, and ceftriaxone in vitro Interestingly, as described previously for tick isolates, amoxicillin shows poor in vitro activity against B. miyamotoi clinical isolates.
Assuntos
Amoxicilina/farmacologia , Antibacterianos/farmacologia , Azitromicina/farmacologia , Borrelia/efeitos dos fármacos , Borrelia/isolamento & purificação , Ceftriaxona/farmacologia , Doxiciclina/farmacologia , Animais , Humanos , Ixodes/microbiologia , Testes de Sensibilidade Microbiana , Febre Recorrente/tratamento farmacológico , Febre Recorrente/microbiologiaRESUMO
Here, we report the whole-genome sequence of six clinical Borrelia miyamotoi isolates from the Russian Federation. Using two independent next-generation sequencing platforms, we determined the complete sequence of the chromosome and several plasmids. All strains have an Asian genotype with 99.8% chromosome nucleotide similarity with B. miyamotoi strain FR64b.
RESUMO
Since 1999, human cases of West Nile fever/neuroinvasive disease (WND) have been reported annually in Russia. The highest incidence has been recorded in three provinces of southern European Russia (Volgograd, Astrakhan and Rostov Provinces), yet in 2010-2012 the distribution of human cases expanded northwards considerably. From year to year, the number of WND cases varied widely, with major WND outbreaks in 1999, 2007, 2010, and 2012. The present study was aimed at identifying the most important climatic and environmental factors potentially affecting WND incidence in the three above-mentioned provinces and at building simple prognostic models, using those factors, by the decision trees method. The effects of 96 variables, including mean monthly temperature, relative humidity, precipitation, Normalized Difference Vegetation Index, etc. were taken into account. The findings of this analysis show that an increase of human WND incidence, compared to the previous year, was mostly driven by higher temperatures in May and/or in June, as well as (to a lesser extent) by high August-September temperatures. Declining incidence was associated with cold winters (December and/or January, depending on the region and type of model). WND incidence also tended to decrease during year following major WND outbreaks. Combining this information, the future trend of WND may be, to some extent, predicted, in accordance with the climatic conditions observed before the summer peak of WND incidence.
Assuntos
Clima , Dinâmica Populacional , Febre do Nilo Ocidental/epidemiologia , Previsões , Humanos , Incidência , Federação Russa/epidemiologia , Estações do Ano , TemperaturaRESUMO
Borrelia miyamotoi is distantly related to B. burgdorferi and transmitted by the same hard-body tick species. We report 46 cases of B. miyamotoi infection in humans and compare the frequency and clinical manifestations of this infection with those caused by B. garinii and B. burgdorferi infection. All 46 patients lived in Russia and had influenza-like illness with fever as high as 39.5°C; relapsing febrile illness occurred in 5 (11%) and erythema migrans in 4 (9%). In Russia, the rate of B. miyamotoi infection in Ixodes persulcatus ticks was 1%-16%, similar to rates in I. ricinus ticks in western Europe and I. scapularis ticks in the United States. B. miyamotoi infection may cause relapsing fever and Lyme disease-like symptoms throughout the Holarctic region of the world because of the widespread prevalence of this pathogen in its ixodid tick vectors.