Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Genet ; 47(4): 338-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25730767

RESUMO

Transcriptional elongation is critical for gene expression regulation during embryogenesis. The super elongation complex (SEC) governs this process by mobilizing paused RNA polymerase II (RNAP2). Using exome sequencing, we discovered missense mutations in AFF4, a core component of the SEC, in three unrelated probands with a new syndrome that phenotypically overlaps Cornelia de Lange syndrome (CdLS) that we have named CHOPS syndrome (C for cognitive impairment and coarse facies, H for heart defects, O for obesity, P for pulmonary involvement and S for short stature and skeletal dysplasia). Transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analyses demonstrated similar alterations of genome-wide binding of AFF4, cohesin and RNAP2 in CdLS and CHOPS syndrome. Direct molecular interaction of the SEC, cohesin and RNAP2 was demonstrated. These data support a common molecular pathogenesis for CHOPS syndrome and CdLS caused by disturbance of transcriptional elongation due to alterations in genome-wide binding of AFF4 and cohesin.


Assuntos
Síndrome de Cornélia de Lange/genética , Mutação em Linhagem Germinativa , Proteínas Repressoras/genética , Sequência de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Criança , Proteínas Cromossômicas não Histona/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Feminino , Predisposição Genética para Doença , Células HEK293 , Células HeLa , Humanos , Masculino , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação de Sentido Incorreto , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Coesinas
2.
Methods Mol Biol ; 1164: 33-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24927833

RESUMO

The genomic approach (ChIP-seq) we introduce here is now a widely used powerful tool to explore protein-DNA interaction at genome-wide level in high resolution. This technology opens up the way to understand how local event mediated by protein-protein or protein-DNA interactions lead to the dynamic changes of overall chromosome structure and how variety of proteins make a regulatory network for the faithful execution of various chromosomal functions (i.e., transcription, replication, recombination, repair, and partition).


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/metabolismo , DNA/metabolismo , Animais , Cromatina/química , Cromatina/isolamento & purificação , Reagentes de Ligações Cruzadas/química , DNA/análise , DNA/isolamento & purificação , Humanos
3.
Nucleic Acids Res ; 42(1): e3, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24089142

RESUMO

Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology.


Assuntos
Replicação do DNA , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Origem de Replicação , Saccharomyces cerevisiae/genética
4.
Genes Dev ; 27(24): 2736-48, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24352427

RESUMO

Fertilization precisely choreographs parental genomes by using gamete-derived cellular factors and activating genome regulatory programs. However, the mechanism remains elusive owing to the technical difficulties of preparing large numbers of high-quality preimplantation cells. Here, we collected >14 × 10(4) high-quality mouse metaphase II oocytes and used these to establish detailed transcriptional profiles for four early embryo stages and parthenogenetic development. By combining these profiles with other public resources, we found evidence that gene silencing appeared to be mediated in part by noncoding RNAs and that this was a prerequisite for post-fertilization development. Notably, we identified 817 genes that were differentially expressed in embryos after fertilization compared with parthenotes. The regulation of these genes was distinctly different from those expressed in parthenotes, suggesting functional specialization of particular transcription factors prior to first cell cleavage. We identified five transcription factors that were potentially necessary for developmental progression: Foxd1, Nkx2-5, Sox18, Myod1, and Runx1. Our very large-scale whole-transcriptome profile of early mouse embryos yielded a novel and valuable resource for studies in developmental biology and stem cell research. The database is available at http://dbtmee.hgc.jp.


Assuntos
Fertilização/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Animais , Análise por Conglomerados , Bases de Dados Genéticas , Feminino , Redes Reguladoras de Genes , Masculino , Camundongos , Oócitos/fisiologia , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/metabolismo , Espermatozoides/fisiologia , Fatores de Tempo , Fatores de Transcrição/genética
5.
Nature ; 489(7415): 313-7, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22885700

RESUMO

Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the 'used' cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/metabolismo , Histona Desacetilases/genética , Mutação/genética , Proteínas Repressoras/genética , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anáfase , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/química , Cristalografia por Raios X , Proteínas de Ligação a DNA , Feminino , Fibroblastos , Células HeLa , Histona Desacetilases/química , Histona Desacetilases/deficiência , Histona Desacetilases/metabolismo , Humanos , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Prófase , Conformação Proteica , Proteínas/genética , Proteínas Repressoras/química , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo , Transcrição Gênica , Coesinas
6.
Mol Cell ; 39(5): 689-99, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20832721

RESUMO

Sister chromatid cohesion is thought to involve entrapment of sister DNAs by a tripartite ring composed of the cohesin subunits Smc1, Smc3, and Scc1. Establishment of cohesion during S phase depends on acetylation of Smc3's nucleotide-binding domain (NBD) by the Eco1 acetyl transferase. It is destroyed at the onset of anaphase due to Scc1 cleavage by separase. In yeast, Smc3 acetylation is reversed at anaphase by the Hos1 deacetylase as a consequence of Scc1 cleavage. Smc3 molecules that remain acetylated after mitosis due to Hos1 inactivation cannot generate cohesion during the subsequent S phase, implying that cohesion establishment depends on de novo acetylation during DNA replication. By inducing Smc3 deacetylation in postreplicative cells due to Hos1 overexpression, we provide evidence that Smc3 acetylation contributes to the maintenance of sister chromatid cohesion. A cycle of Smc3 NBD acetylation is therefore an essential aspect of the chromosome cycle in eukaryotic cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Replicação do DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Fase S/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Separase
7.
EMBO J ; 28(23): 3693-705, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19910927

RESUMO

Dia2 is an F-box protein, which is involved in the regulation of DNA replication in the budding yeast Saccharomyces cerevisiae. The function of Dia2, however, remains largely unknown. In this study, we report that Dia2 is associated with the replication fork and regulates replication fork progression. Using modified yeast two-hybrid screening, we have identified components of the replisome (Mrc1, Ctf4 and Mcm2), as Dia2-binding proteins. Mrc1 and Ctf4 were ubiquitinated by SCF(Dia2) both in vivo and in vitro. Domain analysis of Dia2 revealed that the leucine-rich repeat motif was indispensable for the regulation of replisome progression, whereas the tetratricopeptide repeat (TPR) motif was involved in the interaction with replisome components. In addition, the TPR motif was shown to be involved in Dia2 stability; deleting the TPR stabilized Dia2, mimicking the effect of DNA damage. ChIP-on-chip analysis illustrated that Dia2 localizes to the replication fork and regulates fork progression on hydroxyurea treatment. These results demonstrate that Dia2 is involved in the regulation of replisome activity through a direct interaction with replisome components.


Assuntos
DNA Super-Helicoidal/metabolismo , Proteínas F-Box/química , Proteínas F-Box/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos/fisiologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , DNA Super-Helicoidal/química , DNA Super-Helicoidal/fisiologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas F-Box/metabolismo , Leucina/metabolismo , Leucina/fisiologia , Estabilidade Proteica , Estrutura Terciária de Proteína/fisiologia , Sequências Repetitivas de Aminoácidos/fisiologia , Fase S/genética , Fase S/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
J Biol Chem ; 284(49): 34355-65, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19819872

RESUMO

Mrc1 (mediator of replication checkpoint), Tof1 (topoisomerase I interacting factor), and Csm3 (chromosome segregation in meiosis) are checkpoint-mediator proteins that function during DNA replication and activate the effector kinase Rad53. We reported previously that Mrc1 and Tof1 are constituents of the replication machinery and that both proteins are required for the proper arrest and stabilization of replication forks in the presence of hydroxyurea. In our current study, we show that Csm3 is a component of moving replication forks and that both Tof1 and Csm3 are specifically required for the association of Mrc1 with these structures. In contrast, the deletion of mrc1 did not affect the association of Tof1 and Csm3 with the replication fork complex. In agreement with previous observations in yeast cells, the results of a baculovirus coexpression system showed that these three proteins interact directly with each other to form a mediator complex in the absence of replication forks.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Linhagem Celular , Quinase do Ponto de Checagem 2 , Hidroxiureia/química , Insetos , Modelos Genéticos , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Transdução de Sinais
9.
Mol Cell Biol ; 29(18): 5008-19, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19620285

RESUMO

Mrc1 plays a role in mediating the DNA replication checkpoint. We surveyed replication elongation proteins that interact directly with Mrc1 and identified a replicative helicase, Mcm6, as a specific Mrc1-binding protein. The central portion of Mrc1, containing a conserved coiled-coil region, was found to be essential for interaction with the 168-amino-acid C-terminal region of Mcm6, and introduction of two amino acid substitutions in this C-terminal region abolished the interaction with Mrc1 in vivo. An mcm6 mutant bearing these substitutions showed a severe defect in DNA replication checkpoint activation in response to stress caused by methyl methanesulfonate. Interestingly, the mutant did not show any defect in DNA replication checkpoint activation in response to hydroxyurea treatment. The phenotype of the mcm6 mutant was suppressed when the mutant protein was physically fused with Mrc1. These results strongly suggest for the first time that an Mcm helicase acts as a checkpoint sensor for methyl methanesulfonate-induced DNA damage through direct binding to the replication checkpoint mediator Mrc1.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA/efeitos dos fármacos , Metanossulfonato de Metila/toxicidade , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Estresse Fisiológico/efeitos dos fármacos , Substituição de Aminoácidos/efeitos dos fármacos , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Hidroxiureia/farmacologia , Componente 6 do Complexo de Manutenção de Minicromossomo , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transdução de Sinais/efeitos dos fármacos
10.
Mol Cell ; 32(1): 106-17, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18851837

RESUMO

Yeast Mrc1, ortholog of metazoan Claspin, is both a central component of normal DNA replication forks and a mediator of the S phase checkpoint. We report that Mrc1 interacts with Pol2, the catalytic subunit of DNA polymerase epsilon, essential for leading-strand DNA replication and for the checkpoint. In unperturbed cells, Mrc1 interacts independently with both the N-terminal and C-terminal halves of Pol2 (Pol2N and Pol2C). Strikingly, phosphorylation of Mrc1 during the S phase checkpoint abolishes Pol2N binding, but not Pol2C interaction. Mrc1 is required to stabilize Pol2 at replication forks stalled in HU. The bimodal Mrc1/Pol2 interaction may be an additional step in regulating the S phase checkpoint response to DNA damage on the leading strand. We propose that Mrc1, which also interacts with the MCMs, may modulate coupling of polymerization and unwinding at the replication fork.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Polimerase II/metabolismo , Replicação do DNA , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Polimerase II/química , DNA Polimerase II/genética , DNA Fúngico/biossíntese , DNA Fúngico/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Modelos Moleculares , Complexos Multiproteicos , Mutação , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA