Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5298, 2022 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-36244978

RESUMO

Massive populations of sardines inhabit both the western and eastern boundaries of the world's subtropical ocean basins, supporting both commercial fisheries and populations of marine predators. Sardine populations in western and eastern boundary current systems have responded oppositely to decadal scale anomalies in ocean temperature, but the mechanism for differing variability has remained unclear. Here, based on otolith microstructure and high-resolution stable isotope analyses, we show that habitat temperature, early life growth rates, energy expenditure, metabolically optimal temperature, and, most importantly, the relationship between growth rate and temperature are remarkably different between the two subpopulations in the western and eastern North Pacific. Varying metabolic responses to environmental changes partly explain the contrasting growth responses. Consistent differences in the life-history traits are observed between subpopulations in the western and eastern boundary current systems around South Africa. These growth and survival characteristics can facilitate the contrasting responses of sardine populations to climate change.


Assuntos
Mudança Climática , Peixes , Animais , Ecossistema , Pesqueiros , Peixes/fisiologia , Oceano Pacífico , Temperatura
2.
Glob Chang Biol ; 27(19): 4771-4784, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34268836

RESUMO

Ocean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed "tropicalization". A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral-dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral-dominated ecosystems. We show that increased herbivory by warm-water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf-dominated ecosystems, rather than the complex coral-dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.


Assuntos
Ecossistema , Água do Mar , Animais , Organismos Aquáticos , Recifes de Corais , Concentração de Íons de Hidrogênio
3.
Zoolog Sci ; 36(6): 449-457, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31833315

RESUMO

The Sanriku-ria coast of Japan, a homing area for chum salmon, Oncorhynchus keta, is characterized by a large number of small closed bays into which one or multiple short rivers flow. The present behavioral investigation of chum salmon in this region was designed to gain deeper insight into the migration of chum salmon to their natal rivers. Eighty-three fish caught at the middle part of Otsuchi Bay were tracked using an acoustic transmitter in the narrow inlet into which flow three rivers: the Otsuchi, Koduchi, and Unosumai. The majority of 18 fish that entered the Unosumai River, which flows into the southwest side of the bay, directly approached the river along the southern coast. More than half of fish that entered the Otsuchi and Koduchi Rivers, which flow into the northwest side, also migrated into the inner bay via the southerly route, and then entered these rivers frequently after passing the mouth of the Unosumai River. In the inner bay, the salinity of sea surface water suggested that water from the three rivers circulates in a counterclockwise direction at a depth of less than 1.0 m, flowing eastwardly along the southern coast. The observed migratory paths of homing salmon in Otsuchi Bay thus correspond well with the counterflow of surface river water in the bay. The present results suggest that homing migration of salmon in the Sanriku narrow inlet is guided by natal river flows.


Assuntos
Migração Animal/fisiologia , Oncorhynchus keta/fisiologia , Sistemas de Identificação Animal , Animais , Japão , Rios , Salinidade , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA