Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Ecol Evol ; 14(5): e11394, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38746550

RESUMO

Parents confront multiple aspects of offspring demands and need to coordinate different parental care tasks. Biparental care is considered to evolve under circumstances where one parent is not competent for all tasks and cannot efficiently raise offspring. However, this hypothesis is difficult to test, as uniparental and biparental care rarely coexist. Chinese penduline tits (Remiz consobrinus) provide such a system where both parental care types occur. Here, we experimentally investigated whether parents in biparental nests are less capable of caring than parents in uniparental nests. We monitored parenting efforts at (1) naturally uniparental and biparental nests and (2) biparental nests before and during the temporary removal of a parent. Given the relatively small sample sizes, we have employed various statistical analyses confirming the robustness of our results. We found that total feeding frequency and brooding duration were similar for natural uniparental and biparental nests. Feeding frequency, but not brooding duration, contributed significantly to nestling mass. In line with this, a temporary parental removal revealed that the remaining parents at biparental nests fully compensated for the partner's feeding absence but not for brooding duration. This reflects that the manipulated parents are confronted with a trade-off between feeding and brooding and were selected to invest in the more influential one. However, such a trade-off may not occur in parents of natural uniparental care nests. The different capabilities of a parent independently coordinating feeding and brooding tasks suggest that parents from biparental and uniparental nests were exposed to different resource conditions, thereby foraging efficiency may differ between care types.

2.
Evolution ; 78(4): 690-700, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37948581

RESUMO

Cooperative breeding occurs when helpers provide alloparental care to the offspring of a breeding pair. One hypothesis of why helping occurs is that helpers gain valuable skills that may increase their own future reproductive success. However, research typically focuses on the effect of helping on short-term measures of reproductive success. Fewer studies have considered how helping affects long-term fitness measures. Here, we analyze how helping experience affects key breeding and fitness-related parameters in the Seychelles warbler (Acrocephalus sechellensis). Importantly, we control for females that have cobred (reproduced as a subordinate by laying an egg within a territory in which they are not a dominant breeder), as they already have experience with direct reproduction. Helping experience had no significant association with any of the metrics considered, except that helpers had an older age at first dominance. Accounting for helping experience, females that had cobred produced more adult offspring (≥1 year) after acquiring dominance and had a higher lifetime reproductive success (LRS) than females that had never cobred. Our results suggest that, in the Seychelles warbler, helping experience alone does not increase the fitness of helpers in any of the metrics considered, and highlights the importance of separating the effects of helping from cobreeding. Our findings also emphasize the importance of analyzing the effect of helping at various life-history stages, as higher short-term fitness may not translate to an overall increase in LRS.


Assuntos
Passeriformes , Aves Canoras , Animais , Feminino , Aves Canoras/genética , Reprodução , Estágios do Ciclo de Vida , Comportamento Cooperativo , Comportamento de Ajuda
3.
Behav Ecol ; 34(5): 850-861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744170

RESUMO

Quantifying fitness is important to understand adaptive evolution. Reproductive values are useful for making fitness comparisons involving different categories of individuals, like males and females. By definition, the reproductive value of a category is the expected per capita contribution of the members of that category to the gene pool of future generations. Life history theory reveals how reproductive values can be determined via the estimation of life-history parameters, but this requires an adequate life-history model and intricate algebraic calculations. Recently, an alternative pedigree-based method has become popular, which estimates the expected genetic contribution of individuals to future generations by tracking their descendants down the pedigree. This method is versatile and intuitively appealing, but it is unknown if the method produces estimates of reproductive values that are accurate and precise. To investigate this, we implement various life-history scenarios (for which the "true" reproductive values can be calculated) in individual-based simulations, use the simulation data to estimate reproductive values with the pedigree method, and compare the results with the true target values. We show that the pedigree-based estimation of reproductive values is either biased (in the short term) or imprecise (in the long term). This holds even for simple life histories and under idealized conditions. We conclude that the pedigree method is not a good substitute for the traditional method to quantify reproductive values.

4.
J Anim Ecol ; 92(11): 2189-2200, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37766488

RESUMO

In cooperatively breeding birds, why do some individuals breed independently but others have to help at home? This question has been rarely addressed despite its fundamental importance for understanding the evolution of social cooperation. We address it using 15 years of data from Tibetan ground tits Pseudopodoces humilis where helpers consist of younger males. Since whether younger males successfully breed depends critically on their chances to occupy territories nearby home, our analytic strategy is to identify the determinants of individual differences in gaining territory ownership among these ready-to-breed males. Across widowed, last-year helper and yearling males, an age advantage was evident in inheriting resident territories, occupying adjacent vacancies and budding off part of adjacent territories, which left some last-year helpers and most yearling males to take the latter two routes. These males were more likely to acquire a territory if they were genetically related to the previous or current territory owners; otherwise they remained on natal territories as helpers. The relatedness effect can arise from the prior residence advantage established in the preceding winter when younger males followed their parents to perform kin-directed off-territory forays. Our research highlights the key role of local kinship in determining younger males' territory acquisition and thus their fate in terms of independent reproduction versus help. This finding provides insight into the formation of kin-based, facultative cooperative societies prevailing among vertebrates.


Assuntos
Núcleo Familiar , Passeriformes , Humanos , Masculino , Animais , Comportamento Social , Passeriformes/genética , Cruzamento , Reprodução , Comportamento Cooperativo
5.
J Anim Ecol ; 92(9): 1719-1729, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37335054

RESUMO

Parental care patterns differ enormously among and even within species. This is exemplified by Chinese penduline tits Remiz consobrinus, where biparental care, female-only care, male-only care and biparental desertion all occur in the same population; moreover, the distribution of these care patterns differs systematically between populations. The eco-evolutionary determinants of this diversity are largely unknown. We developed an individual-based model that allows us to investigate the effects of season length and offspring needs (expressed by the efficacy with which a clutch can be raised by a single parent) on the evolution of parental care patterns. The model is largely conceptual, aiming at general conclusions. However, to keep the model realistic, its set-up and the choice of parameters are motivated by field studies on Chinese penduline tits. Exploring a wide range of parameters, we investigate how parental care patterns are affected by season length and offspring needs and whether and under what conditions diverse parental care patterns can stably coexist. We report five main findings. First, under a broad range of conditions, different care patterns (e.g. male care and biparental care) coexist at equilibrium. Second, for the same parameters, alternative evolutionary equilibria are possible; this can explain differences in care patterns across populations. Third, rapid evolutionary transitions can occur between alternative equilibria; this can explain the often-reported evolutionary lability of parental care patterns. Fourth, season length has a strong but nonmonotonic effect on the evolved care patterns. Fifth, when uniparental care efficacy is low, biparental care tends to evolve; however, in many scenarios uniparental care is still common at equilibrium. In addition, our study sheds new light on Trivers' hypothesis that the sex with the highest prezygotic investment is predestined to invest more postzygotically as well. Our study highlights that diversity in parental care can readily evolve and it shows that even in the absence of environmental change parental care patterns can be evolutionary labile. In the presence of directional environmental change, systematic shifts in care patterns are to be expected.


Assuntos
Passeriformes , Comportamento Sexual Animal , Masculino , Feminino , Animais , Estações do Ano , Evolução Biológica
6.
Evol Lett ; 6(6): 438-449, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36579166

RESUMO

Parental age can have considerable effects on offspring phenotypes and health. However, intergenerational effects may also have longer term effects on offspring fitness. Few studies have investigated parental age effects on offspring fitness in natural populations while also testing for sex- and environment-specific effects. Further, longitudinal parental age effects may be masked by population-level processes such as the selective disappearance of poor-quality individuals. Here, we used multigenerational data collected on individually marked Seychelles warblers (Acrocephalus sechellensis) to investigate the impact of maternal and paternal age on offspring life span and lifetime reproductive success. We found negative effects of maternal age on female offspring life span and lifetime reproductive success, which were driven by within-mother effects. There was no difference in annual reproductive output of females born to older versus younger mothers, suggesting that the differences in offspring lifetime reproductive success were driven by effects on offspring life span. In contrast, there was no association between paternal age and female offspring life span or either maternal or paternal age and male offspring life span. Lifetime reproductive success, but not annual reproductive success, of male offspring increased with maternal age, but this was driven by between-mother effects. No paternal age effects were found on female offspring lifetime reproductive success but there was a positive between-father effect on male offspring lifetime reproductive success. We did not find strong evidence for environment-dependent parental age effects. Our study provides evidence for parental age effects on the lifetime fitness of offspring and shows that such effects can be sex dependent. These results add to the growing literature indicating the importance of intergenerational effects on long-term offspring performance and highlight that these effects can be an important driver of variation in longevity and fitness in the wild.

7.
Evol Lett ; 6(6): 450-459, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36579168

RESUMO

Cooperatively breeding animals live longer than their solitary counterparts. This has been suggested for birds, mole rats, and social insects. A common explanation for these long lifespans is that cooperative breeding evolves more readily in long-lived species because lower mortality reduces the rate of territory turnover and thus leads to a limitation of breeding territories. Here, we reverse this argument and show that-rather than being a cause for its evolution-long lifespans are an evolutionary consequence of cooperative breeding. In evolutionary individual-based simulations, we show that natural selection favors a delayed onset of senescence in cooperative breeders, relative to solitary breeders, because cooperative breeders have a delayed age of first reproduction as helpers wait in a reproductive queue to obtain breeder status. Especially long lifespans evolve in cooperative breeders in which queue positions depend on the helpers' age rank among the helpers within the breeding territory. Furthermore, we show that lower genetic relatedness among group members leads to the evolution of longer lifespans. This is because selection against higher mortality is weaker when mortality reduces competition for breeding between relatives. Our results link the evolutionary theory of ageing with kin selection theory, demonstrating that the evolution of ageing in cooperative breeders is driven by the timing of reproduction and kin structure within breeding territories.

8.
Microbiome ; 10(1): 242, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36575553

RESUMO

BACKGROUND: Considerable research has focussed on the importance of bacterial communities within the vertebrate gut microbiome (GM). However, studies investigating the significance of other microbial kingdoms, such as fungi, are notably lacking, despite their potential to influence host processes. Here, we characterise the fungal GM of individuals living in a natural population of Seychelles warblers (Acrocephalus sechellensis). We evaluate the extent to which fungal GM structure is shaped by environment and host factors, including genome-wide heterozygosity and variation at key immune genes (major histocompatibility complex (MHC) and Toll-like receptor (TLR)). Importantly, we also explore the relationship between fungal GM differences and subsequent host survival. To our knowledge, this is the first time that the genetic drivers and fitness consequences of fungal GM variation have been characterised for a wild vertebrate population. RESULTS: Environmental factors, including season and territory quality, explain the largest proportion of variance in the fungal GM. In contrast, neither host age, sex, genome-wide heterozygosity, nor TLR3 genotype was associated with fungal GM differences in Seychelles warblers. However, the presence of four MHC-I alleles and one MHC-II allele was associated with changes in fungal GM alpha diversity. Changes in fungal richness ranged from between 1 and 10 sequencing variants lost or gained; in some cases, this accounted for 20% of the fungal variants carried by an individual. In addition to this, overall MHC-I allelic diversity was associated with small, but potentially important, changes in fungal GM composition. This is evidenced by the fact that fungal GM composition differed between individuals that survived or died within 7 months of being sampled. CONCLUSIONS: Our results suggest that environmental factors play a primary role in shaping the fungal GM, but that components of the host immune system-specifically the MHC-may also contribute to the variation in fungal communities across individuals within wild populations. Furthermore, variation in the fungal GM can be associated with differential survival in the wild. Further work is needed to establish the causality of such relationships and, thus, the extent to which components of the GM may impact host evolution. Video Abstract.


Assuntos
Micobioma , Aves Canoras , Animais , Genótipo , Micobioma/genética , Seicheles , Aves Canoras/genética , Aves Canoras/microbiologia
9.
Ecol Evol ; 12(6): e8971, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784039

RESUMO

Environmental conditions experienced during early life may have long-lasting effects on later-life phenotypes and fitness. Individuals experiencing poor early-life conditions may suffer subsequent fitness constraints. Alternatively, individuals may use a strategic "Predictive Adaptive Response" (PAR), whereby they respond-in terms of physiology or life-history strategy-to the conditions experienced in early life to maximize later-life fitness. Particularly, the Future Lifespan Expectation (FLE) PAR hypothesis predicts that when poor early-life conditions negatively impact an individual's physiological state, it will accelerate its reproductive schedule to maximize fitness during its shorter predicted life span. We aimed to measure the impact of early-life conditions and resulting fitness across individual lifetimes to test predictions of the FLE hypothesis in a wild, long-lived model species. Using a long-term individual-based dataset, we investigated how early-life conditions are linked with subsequent fitness in an isolated population of the Seychelles warbler Acrocephalus sechellensis. How individuals experience early-life environmental conditions may vary greatly, so we also tested whether telomere length-shorter telomers are a biomarker of an individual's exposure to stress-can provide an effective measure of the individual-specific impact of early-life conditions. Specifically, under the FLE hypothesis, we would expect shorter telomeres to be associated with accelerated reproduction. Contrary to expectations, shorter juvenile telomere length was not associated with poor early-life conditions, but instead with better conditions, probably as a result of faster juvenile growth. Furthermore, neither juvenile telomere length, nor other measures of early-life conditions, were associated with age of first reproduction or the number of offspring produced during early life in either sex. We found no support for the FLE hypothesis. However, for males, poor early-life body condition was associated with lower first-year survival and reduced longevity, indicating that poor early-life conditions pose subsequent fitness constraints. Our results also showed that using juvenile telomere length as a measure of early-life conditions requires caution, as it is likely to not only reflect environmental stress but also other processes such as growth.

10.
Ecol Evol ; 12(7): e9049, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35813920

RESUMO

The environment experienced during development, and its impact on intrinsic condition, can have lasting outcomes for individual phenotypes and could contribute to variation in adult senescence trajectories. However, the nature of this relationship in wild populations remains uncertain, owing to the difficulties in summarizing natal conditions and in long-term monitoring of individuals from free-roaming long-lived species. Utilizing a closely monitored, closed population of Seychelles warblers (Acrocephalus sechellensis), we determine whether juvenile body mass is associated with natal socioenvironmental factors, specific genetic traits linked to fitness in this system, survival to adulthood, and senescence-related traits. Juveniles born in seasons with higher food availability and into smaller natal groups (i.e., fewer competitors) were heavier. In contrast, there were no associations between juvenile body mass and genetic traits. Furthermore, size-corrected mass-but not separate measures of natal food availability, group size, or genetic traits-was positively associated with survival to adulthood, suggesting juvenile body mass is indicative of natal condition. Heavier juveniles had greater body mass and had higher rates of annual survival as adults, independent of age. In contrast, there was no association between juvenile mass and adult telomere length attrition (a measure of somatic stress) nor annual reproduction. These results indicate that juvenile body mass, while not associated with senescence trajectories, can influence the likelihood of surviving to old age, potentially due to silver-spoon effects. This study shows that measures of intrinsic condition in juveniles can provide important insights into the long-term fitness of individuals in wild populations.

11.
Behav Ecol ; 33(2): 352-363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444495

RESUMO

Even in well-studied organisms, it is often challenging to uncover the social and environmental determinants of fitness. Typically, fitness is determined by a variety of factors that act in concert, thus forming complex networks of causal relationships. Moreover, even strong correlations between social and environmental conditions and fitness components may not be indicative of direct causal links, as the measured variables may be driven by unmeasured (or unmeasurable) causal factors. Standard statistical approaches, like multiple regression analyses, are not suited for disentangling such complex causal relationships. Here, we apply structural equation modeling (SEM), a technique that is specifically designed to reveal causal relationships between variables, and which also allows to include hypothetical causal factors. Therefore, SEM seems ideally suited for comparing alternative hypotheses on how fitness differences arise from differences in social and environmental factors. We apply SEM to a rich data set collected in a long-term study on the Seychelles warbler (Acrocephalus sechellensis), a bird species with facultatively cooperative breeding and a high rate of extra-group paternity. Our analysis reveals that the presence of helpers has a positive effect on the reproductive output of both female and male breeders. In contrast, per capita food availability does not affect reproductive output. Our analysis does not confirm earlier suggestions on other species that the presence of helpers has a negative effect on the reproductive output of male breeders. As such, both female and male breeders should tolerate helpers in their territories, irrespective of food availability.

12.
Microbiome ; 10(1): 41, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35256003

RESUMO

BACKGROUND: The gut microbiome (GM) can influence many biological processes in the host, impacting its health and survival, but the GM can also be influenced by the host's traits. In vertebrates, Major Histocompatibility Complex (MHC) genes play a pivotal role in combatting pathogens and are thought to shape the host's GM. Despite this-and the documented importance of both GM and MHC variation to individual fitness-few studies have investigated the association between the GM and MHC in the wild. RESULTS: We characterised MHC class I (MHC-I), MHC class II (MHC-II) and GM variation in individuals within a natural population of the Seychelles warbler (Acrocephalus sechellensis). We determined how the diversity and composition of the GM varied with MHC characteristics, in addition to environmental factors and other host traits. Our results show that the presence of specific MHC alleles, but not MHC diversity, influences both the diversity and composition of the GM in this population. MHC-I alleles, rather than MHC-II alleles, had the greatest impact on the GM. GM diversity was negatively associated with the presence of three MHC-I alleles (Ase-ua3, Ase-ua4, Ase-ua5), and one MHC-II allele (Ase-dab4), while changes in GM composition were associated with the presence of four different MHC-I alleles (Ase-ua1, Ase-ua7, Ase-ua10, Ase-ua11). There were no associations between GM diversity and TLR3 genotype, but GM diversity was positively correlated with genome-wide heterozygosity and varied with host age and field period. CONCLUSIONS: These results suggest that components of the host's immune system play a role in shaping the GM of wild animals. Host genotype-specifically MHC-I and to a lesser degree MHC-II variation-can modulate the GM, although whether this occurs directly, or indirectly through effects on host health, is unclear. Importantly, if immune genes can regulate host health through modulation of the microbiome, then it is plausible that the microbiome could also influence selection on immune genes. As such, host-microbiome coevolution may play a role in maintaining functional immunogenetic variation within natural vertebrate populations. Video abstract.


Assuntos
Microbioma Gastrointestinal , Seleção Genética , Alelos , Animais , Microbioma Gastrointestinal/genética , Variação Genética/genética , Imunogenética , Vertebrados/genética
13.
Evolution ; 76(5): 915-930, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325482

RESUMO

In socially monogamous species, extra-pair paternity (EPP) is predicted to increase variance in male reproductive success (RS) beyond that resulting from genetic monogamy, thus, increasing the "opportunity for selection" (maximum strength of selection that can act on traits). This prediction is challenging to investigate in wild populations because lifetime reproduction data are often incomplete. Moreover, age-specific variances in reproduction have been rarely quantified. We analyzed 21 years of near-complete social and genetic reproduction data from an insular population of Seychelles warblers (Acrocephalus sechellensis). We quantified EPP's contribution to lifetime and age-specific opportunities for selection in males. We compared the variance in male genetic RS vs social ("apparent") RS (RSap ) to assess if EPP increased the opportunity for selection over that resulting from genetic monogamy. Despite not causing a statistically significant excess (19%) of the former over the latter, EPP contributed substantially (27%) to the variance in lifetime RS, similarly to within-pair paternity (WPP, 39%) and to the positive WPP-EPP covariance (34%). Partitioning the opportunity for selection into age-specific (co)variance components, showed that EPP also provided a substantial contribution at most ages, varying with age. Therefore, despite possibly not playing the main role in shaping sexual selection in Seychelles warblers, EPP provided a substantial contribution to the lifetime and age-specific opportunity for selection, which can influence evolutionary processes in age-structured populations.


Assuntos
Passeriformes , Paternidade , Fatores Etários , Animais , Masculino , Passeriformes/genética , Reprodução/genética , Comportamento Sexual Animal
14.
Ecol Lett ; 25(3): 647-660, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35199926

RESUMO

Sex roles describe sex differences in courtship, mate competition, social pair-bonds and parental care. A key challenge is to identify associations among the components and the drivers of sex roles. Here, we investigate sex roles using data from over 1800 bird species. We found extensive variation and lability in proxies of sex roles, indicating remarkably independent evolution among sex role components. Climate and life history showed weak associations with sex roles. However, adult sex ratio is associated with sexual dimorphism, mating system and parental care, suggesting that social environment is central to explaining variation in sex roles among birds. Our results suggest that sex differences in reproductive behaviour are the result of diverse and idiosyncratic responses to selection. Further understanding of sex roles requires studies at the population level to test how local responses to ecology, life histories and mating opportunities drive processes that shape sex role variation among higher taxa.


Assuntos
Aves , Papel de Gênero , Animais , Evolução Biológica , Aves/fisiologia , Feminino , Masculino , Filogenia , Caracteres Sexuais , Razão de Masculinidade , Comportamento Sexual Animal/fisiologia , Meio Social
15.
R Soc Open Sci ; 9(2): 211179, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35223054

RESUMO

Communal breeding, wherein multiple conspecifics live and reproduce together, may generate short-term benefits in terms of defence and reproduction. However, its carry-over effects remain unclear. We experimentally tested the effects of communal breeding on parental care and reproduction in burying beetles (Nicrophorus vespilloides), which use carcasses as breeding resources and provide parental care to offspring. We subjected individuals to communal or non-communal breeding (i.e. pair breeding) during their first breeding event and to non-communal breeding during their second breeding event. We measured the parental care of individuals and of groups and the reproductive success of groups during both breeding events. In communal groups, large individuals became dominant and largely monopolized the carcass, whereas small individuals (i.e. subordinates) had restricted access to the carcass. At the first breeding event, large males in communal groups spent more time providing care than large males in non-communal groups, whereas such an effect was not observed for large females and small individuals. Reproductive successes were similar in communal and non-communal groups, indicating no short-term benefits of communal breeding in terms of reproduction. Compared with males from non-communal groups, males originating from communal groups produced a larger size of brood during their second breeding event, whereas such an effect was not observed for females. Our results demonstrate the sex-specific effects of communal breeding experience on parenting performance and fitness.

16.
Mol Ecol ; 31(23): 6324-6338, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-33586226

RESUMO

Individual variation in telomere length is predictive of health and mortality risk across a range of species. However, the relative influence of environmental and genetic variation on individual telomere length in wild populations remains poorly understood. Heritability of telomere length has primarily been calculated using parent-offspring regression which can be confounded by shared environments. To control for confounding variables, quantitative genetic "animal models" can be used, but few studies have applied animal models in wild populations. Furthermore, parental age at conception may also influence offspring telomere length, but most studies have been cross-sectional. We investigated within- and between-parental age at conception effects and heritability of telomere length in the Seychelles warbler using measures from birds caught over 20 years and a multigenerational pedigree. We found a weak negative within-paternal age at conception effect (as fathers aged, their offspring had shorter telomeres) and a weak positive between-maternal age at conception effect (females that survived to older ages had offspring with longer telomeres). Animal models provided evidence that heritability and evolvability of telomere length were low in this population, and that variation in telomere length was not driven by early-life effects of hatch period or parental identities. Quantitative polymerase chain reaction plate had a large influence on telomere length variation and not accounting for it in the models would have underestimated heritability. Our study illustrates the need to include and account for technical variation in order to accurately estimate heritability, as well as other environmental effects, on telomere length in natural populations.


Assuntos
Fertilização , Passeriformes , Animais , Feminino , Humanos , Estudos Transversais , Passeriformes/genética , Telômero/genética , Pais
17.
J Anim Ecol ; 91(1): 224-240, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704272

RESUMO

The social environment in which individuals live affects their fitness and in turn population dynamics as a whole. Birds with facultative cooperative breeding can live in social groups with dominants, subordinate helpers that assist with the breeding of others, and subordinate non-helpers. Helping behaviour benefits dominants through increased reproductive rates and reduced extrinsic mortality, such that cooperative breeding might have evolved in response to unpredictable, harsh conditions affecting reproduction and/or survival of the dominants. Additionally, there may be different costs and benefits to both helpers and non-helpers, depending on the time-scale. For example, early-life costs might be compensated by later-life benefits. These differential effects are rarely analysed in the same study. We examined whether helping behaviour affects population persistence in a stochastic environment and whether there are direct fitness consequences of different life-history tactics adopted by helpers and non-helpers. We parameterised a matrix population model describing the population dynamics of female Seychelles warblers Acrocephalus sechellensis, birds that display facultative cooperative breeding. The stochastic density-dependent model is defined by a (st)age structure that includes life-history differences between helpers and non-helpers and thus can estimate the demographic mechanisms of direct benefits of helping behaviour. We found that population dynamics are strongly influenced by stochastic variation in the reproductive rates of the dominants, that helping behaviour promotes population persistence and that there are only early-life differences in the direct fitness of helpers and non-helpers. Through a matrix population model, we captured multiple demographic rates simultaneously and analysed their relative importance in determining population dynamics of these cooperative breeders. Disentangling early-life versus lifetime effects of individual tactics sheds new light on the costs and benefits of helping behaviour. For example, the finding that helpers and non-helpers have similar lifetime reproductive outputs and that differences in reproductive values between the two life-history tactics arise only in early life suggests that overall, helpers and non-helpers have a similar balance of costs and benefits when analysing direct benefits. We recommend analysing the consequence of different life-history tactics, during both early life and over the lifetime, as analyses of these different time frames may produce conflicting results.


Assuntos
Comportamento Cooperativo , Passeriformes , Animais , Feminino , Comportamento de Ajuda , Passeriformes/fisiologia , Dinâmica Populacional , Reprodução/fisiologia
18.
Mol Ecol ; 31(23): 5933-5945, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34219315

RESUMO

Telomeres have been advocated to be important markers of biological age in evolutionary and ecological studies. Telomeres usually shorten with age and shortening is frequently associated with environmental stressors and increased subsequent mortality. Telomere lengthening - an apparent increase in telomere length between repeated samples from the same individual - also occurs. However, the exact circumstances, and consequences, of telomere lengthening are poorly understood. Using longitudinal data from the Seychelles warbler (Acrocephalus sechellensis), we tested whether telomere lengthening - which occurs in adults of this species - is associated with specific stressors (reproductive effort, food availability, malarial infection and cooperative breeding) and predicts subsequent survival. In females, telomere shortening was observed under greater stress (i.e., low food availability, malaria infection), while telomere lengthening was observed in females experiencing lower stress (i.e., high food availability, assisted by helpers, without malaria). The telomere dynamics of males were not associated with the key stressors tested. These results indicate that, at least for females, telomere lengthening occurs in circumstances more conducive to self-maintenance. Importantly, both females and males with lengthened telomeres had improved subsequent survival relative to individuals that displayed unchanged, or shortened, telomeres - indicating that telomere lengthening is associated with individual fitness. These results demonstrate that telomere dynamics are bidirectionally responsive to the level of stress that an individual faces, but may poorly reflect the accumulation of stress over an individuals lifetime.


Assuntos
Homeostase do Telômero , Vertebrados , Humanos , Animais , Masculino , Adulto , Feminino , Encurtamento do Telômero/genética , Evolução Biológica , Telômero/genética
19.
Anim Microbiome ; 3(1): 84, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930493

RESUMO

BACKGROUND: The vertebrate gut microbiome (GM) can vary substantially across individuals within the same natural population. Although there is evidence linking the GM to health in captive animals, very little is known about the consequences of GM variation for host fitness in the wild. Here, we explore the relationship between faecal microbiome diversity, body condition, and survival using data from the long-term study of a discrete natural population of the Seychelles warbler (Acrocephalus sechellensis) on Cousin Island. To our knowledge, this is the first time that GM differences associated with survival have been fully characterised for a natural vertebrate species, across multiple age groups and breeding seasons. RESULTS: We identified substantial variation in GM community structure among sampled individuals, which was partially explained by breeding season (5% of the variance), and host age class (up to 1% of the variance). We also identified significant differences in GM community membership between adult birds that survived, versus those that had died by the following breeding season. Individuals that died carried increased abundances of taxa that are known to be opportunistic pathogens, including several ASVs in the genus Mycobacterium. However, there was no association between GM alpha diversity (the diversity of bacterial taxa within a sample) and survival to the next breeding season, or with individual body condition. Additionally, we found no association between GM community membership and individual body condition. CONCLUSIONS: These results demonstrate that components of the vertebrate GM can be associated with host fitness in the wild. However, further research is needed to establish whether changes in bacterial abundance contribute to, or are only correlated with, differential survival; this will add to our understanding of the importance of the GM in the evolution of host species living in natural populations.

20.
Mol Ecol ; 30(11): 2528-2542, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949028

RESUMO

Understanding where genetic variation exists, and how it influences fitness within populations is important from an evolutionary and conservation perspective. Signatures of past selection suggest that pathogen-mediated balancing selection is a key driver of immunogenetic variation, but studies tracking contemporary evolution are needed to help resolve the evolutionary forces and mechanism at play. Previous work in a bottlenecked population of Seychelles warblers (Acrocephalus sechellensis) show that functional variation has been maintained at the viral-sensing Toll-like receptor 3 (TLR3) gene, including one nonsynonymous SNP, resulting in two alleles. Here, we characterise evolution at this TLR3 locus over a 25-year period within the original remnant population of the Seychelles warbler, and in four other derived, populations. Results show a significant and consistent temporal decline in the frequency of the TLR3C allele in the original population, and that similar declines in the TLR3C allele frequency occurred in all the derived populations. Individuals (of both sexes) with the TLR3CC genotype had lower survival, and males - but not females - that carry the TLR3C allele had significantly lower lifetime reproductive success than those with only the TLR3A allele. These results indicate that positive selection on the TLR3A allele, caused by an as yet unknown agent, is driving TLR3 evolution in the Seychelles warbler. No evidence of heterozygote advantage was detected. However, whether the positive selection observed is part of a longer-term pattern of balancing selection (through fluctuating selection or rare-allele advantage) cannot be resolved without tracking the TLR3C allele over an extended time period.


Assuntos
Passeriformes , Receptor 3 Toll-Like , Animais , Feminino , Frequência do Gene , Genótipo , Imunidade Inata , Masculino , Receptor 3 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA