Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Environ Virol ; 12(1): 35-47, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31679104

RESUMO

The bag-mediated filtration system (BMFS) was developed to facilitate poliovirus (PV) environmental surveillance, a supplement to acute flaccid paralysis surveillance in PV eradication efforts. From April to September 2015, environmental samples were collected from four sites in Nairobi, Kenya, and processed using two collection/concentration methodologies: BMFS (> 3 L filtered) and grab sample (1 L collected; 0.5 L concentrated) with two-phase separation. BMFS and two-phase samples were analyzed for PV by the standard World Health Organization poliovirus isolation algorithm followed by intratypic differentiation. BMFS samples were also analyzed by a cell culture independent real-time reverse transcription polymerase chain reaction (rRT-PCR) and an alternative cell culture method (integrated cell culture-rRT-PCR with PLC/PRF/5, L20B, and BGM cell lines). Sabin polioviruses were detected in a majority of samples using BMFS (37/42) and two-phase separation (32/42). There was statistically more frequent detection of Sabin-like PV type 3 in samples concentrated with BMFS (22/42) than by two-phase separation (14/42, p = 0.035), possibly due to greater effective volume assayed (870 mL vs. 150 mL). Despite this effective volume assayed, there was no statistical difference in Sabin-like PV type 1 and Sabin-like PV type 2 detection between these methods (9/42 vs. 8/42, p = 0.80 and 27/42 vs. 32/42, p = 0.18, respectively). This study demonstrated that BMFS can be used for PV environmental surveillance and established a feasible study design for future research.


Assuntos
Monitoramento Ambiental/métodos , Filtração/métodos , Água Doce/virologia , Poliovirus/isolamento & purificação , Monitoramento Ambiental/instrumentação , Estudos de Viabilidade , Filtração/instrumentação , Água Doce/química , Humanos , Quênia , Poliomielite/virologia , Poliovirus/classificação , Poliovirus/genética
2.
Water Sci Technol Water Supply ; 19(6): 1668-1676, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33584163

RESUMO

Enteric virus environmental surveillance via a highly sensitive method is critical, as many enteric viruses have low infectious doses and can persist in the environment for extended periods. This study determined the potential of the novel bag-mediated filtration system (BMFS) to recover human enteric viruses and pepper mild mottle virus (PMMoV) from wastewater and wastewater-impacted surface waters, examined PMMoV use as a fecal contamination indicator in Kenya, and identified potential BMFS process controls. From April 2015 to April 2016, BMFS samples were collected from seven sites in Kenya (n = 59). Enteroviruses and PMMoV were detected in 100% of samples, and human adenovirus, human astrovirus, hepatitis A virus, norovirus GI, norovirus GII, sapovirus, and human rotavirus were detected in the majority of samples. The consistent detection of enteroviruses and PMMoV suggests that these viruses could be used as indicators in similarly fecally contaminated sites and BMFS process controls. As contamination of surface water sources remains a global issue, enteric virus environmental surveillance is necessary. This study demonstrates an effective way to sample large volumes of wastewater and wastewater-impacted surface waters for the detection of multiple enteric viruses simultaneously.

3.
Food Environ Virol ; 10(1): 72-82, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674934

RESUMO

Environmental surveillance of poliovirus (PV) plays an important role in the global program for eradication of wild PV. The bag-mediated filtration system (BMFS) was first developed in 2014 and enhances PV surveillance when compared to the two-phase grab method currently recommended by the World Health Organization (WHO). In this study, the BMFS design was improved and tested for its usability in wastewater and wastewater-impacted surface waters in Nairobi, Kenya. Modifications made to the BMFS included the size, color, and shape of the collection bags, the filter housing used, and the device used to elute the samples from the filters. The modified BMFS concentrated 3-10 L down to 10 mL, which resulted in an effective volume assayed (900-3000 mL) that was 6-20 times greater than the effective volume assayed for samples processed by the WHO algorithm (150 mL). The system developed allows for sampling and in-field virus concentration, followed by transportation of the filter for further analysis with simpler logistics than the current methods. This may ultimately reduce the likelihood of false-negative samples by increasing the effective volume assayed compared to samples processed by the WHO algorithm, making the BMFS a valuable sampling system for wastewater and wastewater-impacted surface waters.


Assuntos
Monitoramento Ambiental/métodos , Filtração/métodos , Poliomielite/virologia , Poliovirus/crescimento & desenvolvimento , Águas Residuárias/virologia , Poluição da Água , Humanos , Quênia , Esgotos/virologia , Água , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA