Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396954

RESUMO

Runx2 (runt related transcription factor 2) is an essential transcription factor for osteoblast proliferation and differentiation. Uridine diphosphate (UDP)-N-acetylgalactosamine (GalNAc): polypeptide GalNAc-transferase 3 (Galnt3) prevents proteolytic processing of fibroblast growth factor 23 (Fgf23), which is a hormone that regulates the serum level of phosphorus. Runx2 and Galnt3 were expressed in osteoblasts and osteocytes, and Fgf23 expression was restricted to osteocytes in bone. Overexpression and knock-down of Runx2 upregulated and downregulated, respectively, the expressions of Galnt3 and Fgf23, and Runx2 directly regulated the transcriptional activity of Galnt3 in reporter assays. The expressions of Galnt3 and Fgf23 in osteoblast-specific Runx2 knockout (Runx2fl/flCre) mice were about half those in Runx2fl/fl mice. However, the serum levels of phosphorus and intact Fgf23 in Runx2fl/flCre mice were similar to those in Runx2fl/fl mice. The trabecular bone volume was increased during aging in both male and female Galnt3-/- mice, but the osteoid was reduced. The markers for bone formation and resorption in Galnt3-/- mice were similar to the control in both sexes. Galnt3-/- mice exhibited hyperphosphatemia and hypercalcemia, and the intact Fgf23 was about 40% that of wild-type mice. These findings indicated that Runx2 regulates the expressions of Galnt3 and Fgf23 and that Galnt3 decelerates the mineralization of osteoid by stabilizing Fgf23.


Assuntos
Calcificação Fisiológica , Calcinose , N-Acetilgalactosaminiltransferases , Osteoblastos , Animais , Feminino , Masculino , Camundongos , Calcinose/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Fatores de Crescimento de Fibroblastos/metabolismo , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Osteoblastos/metabolismo , Fósforo , Polipeptídeo N-Acetilgalactosaminiltransferase
2.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139148

RESUMO

Bcl2l1 (Bcl-XL) belongs to the Bcl-2 family, Bcl2 and Bcl2-XL are major anti-apoptotic proteins, and the apoptosis of osteoblasts is a key event for bone homeostasis. As the functions of Bcl2l1 in osteoblasts and bone homeostasis remain unclear, we generated osteoblast-specific Bcl2l1-deficient (Bcl2l1fl/flCre) mice using 2.3-kb Col1a1 Cre. Trabecular bone volume and the trabecular number were lower in Bcl2l1fl/flCre mice of both sexes than in Bcl2l1fl/fl mice. In bone histomorphometric analysis, osteoclast parameters were increased in Bcl2l1fl/flCre mice, whereas osteoblast parameters and the bone formation rate were similar to those in Bcl2l1fl/fl mice. TUNEL-positive osteoblastic cells and serum TRAP5b levels were increased in Bcl2l1fl/flCre mice. The deletion of Bcl2l1 in osteoblasts induced Tnfsf11 expression, whereas the overexpression of Bcl-XL had no effect. In a co-culture of Bcl2l1-deficient primary osteoblasts and wild-type bone-marrow-derived monocyte/macrophage lineage cells, the numbers of multinucleated TRAP-positive cells and resorption pits increased. Furthermore, serum deprivation or the deletion of Bcl2l1 in primary osteoblasts increased apoptosis and ATP levels in the medium. Therefore, the reduction in trabecular bone in Bcl2l1fl/flCre mice may be due to enhanced bone resorption through osteoblast apoptosis and the release of ATP from apoptotic osteoblasts, and Bcl2l1 may inhibit bone resorption by preventing osteoblast apoptosis.


Assuntos
Reabsorção Óssea , Osteogênese , Animais , Feminino , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Apoptose/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Osso Esponjoso/metabolismo , Diferenciação Celular , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
J Mol Histol ; 54(4): 329-347, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37357253

RESUMO

FAM20C phosphorylates secretory proteins at S-x-E/pS motifs, and previous studies of Fam20C-dificient mice revealed that FAM20C played essential roles in bone and tooth formation. Inactivation of FAM20C in mice led to hypophosphatemia that masks direct effect of FAM20C in these tissues, and consequently the direct role of FAM20C remains unknown. Our previous study reported that osteoblast/odontoblast-specific Fam20C transgenic (Fam20C-Tg) mice had normal serum phosphate levels and that osteoblastic FAM20C-mediated phosphorylation regulated bone formation and resorption. Here, we investigated the direct role of FAM20C in dentin using Fam20C-Tg mice. The tooth of Fam20C-Tg mice contained numerous highly phosphorylated proteins, including SIBLINGs, compared to that of wild-type mice. In Fam20C-Tg mice, coronal dentin volume decreased and mineral density unchanged at early age, while the volume unchanged and the mineral density elevated at maturity. In these mice, radicular dentin volume and mineral density decreased at all ages, and histologically, the radicular dentin had wider predentin and abnormal apical-side dentin with embedded cells and argyrophilic canaliculi. Immunohistochemical analyses revealed that abnormal apical-side dentin had bone and dentin matrix properties accompanied with osteoblast-lineage cells. Further, in Fam20C-Tg mice, DSPP content which is important for dentin formation, was reduced in dentin, especially radicular dentin, which might lead to defects mainly in radicular dentin. Renal subcapsular transplantations of tooth germ revealed that newly formed radicular dentin replicated apical abnormal dentin of Fam20C-Tg mice, corroborating that FAM20C overexpression indeed caused the abnormal dentin. Our findings indicate that odontoblastic FAM20C-mediated phosphorylation in the tooth regulates dentin formation and odontoblast differentiation.


Assuntos
Odontoblastos , Dente , Camundongos , Animais , Odontoblastos/metabolismo , Camundongos Transgênicos , Dente/metabolismo , Diferenciação Celular/fisiologia , Proteínas da Matriz Extracelular/genética , Dentina/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação ao Cálcio/análise
4.
J Cell Physiol ; 238(3): 566-581, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715607

RESUMO

Nuclear protein 1 (NUPR1) is a stress-induced protein activated by various stresses, such as inflammation and oxidative stress. We previously reported that Nupr1 deficiency increased bone volume by enhancing bone formation in 11-week-old mice. Analysis of differentially expressed genes between wild-type (WT) and Nupr1-knockout (Nupr1-KO) osteocytes revealed that high temperature requirement A 1 (HTRA1), a serine protease implicated in osteogenesis and transforming growth factor-ß signaling was markedly downregulated in Nupr1-KO osteocytes. Nupr1 deficiency also markedly reduced HtrA1 expression, but enhanced SMAD1 signaling in in vitro-cultured primary osteoblasts. In contrast, Nupr1 overexpression enhanced HtrA1 expression in osteoblasts, suggesting that Nupr1 regulates HtrA1 expression, thereby suppressing osteoblastogenesis. Since HtrA1 is also involved in cellular senescence and age-related diseases, we analyzed aging-related bone loss in Nupr1-KO mice. Significant spine trabecular bone loss was noted in WT male and female mice during 6-19 months of age, whereas aging-related trabecular bone loss was attenuated, especially in Nupr1-KO male mice. Moreover, cellular senescence-related markers were upregulated in the osteocytes of 6-19-month-old WT male mice but markedly downregulated in the osteocytes of 19-month-old Nupr1-KO male mice. Oxidative stress-induced cellular senescence stimulated Nupr1 and HtrA1 expression in in vitro-cultured primary osteoblasts, and Nupr1 overexpression enhanced p16ink4a expression in osteoblasts. Finally, NUPR1 expression in osteocytes isolated from the bones of patients with osteoarthritis was correlated with age. Collectively, these results indicate that Nupr1 regulates HtrA1-mediated osteoblast differentiation and senescence. Our findings unveil a novel Nupr1/HtrA1 axis, which may play pivotal roles in bone formation and age-related bone loss.


Assuntos
Osso e Ossos , Regulação para Baixo , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Osteoporose , Transdução de Sinais , Proteína Smad1 , Animais , Feminino , Masculino , Camundongos , Osso e Ossos/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Camundongos Knockout , Osteoblastos/metabolismo , Osteócitos/metabolismo , Osteogênese , Osteoporose/metabolismo , Osteoporose/prevenção & controle , Proteína Smad1/metabolismo
5.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362086

RESUMO

RUNX proteins, such as RUNX2, regulate the proliferation and differentiation of chondrocytes and osteoblasts. Haploinsufficiency of RUNX2 causes cleidocranial dysplasia, but a detailed analysis of Runx2+/- mice has not been reported. Furthermore, CBFB is required for the stability and DNA binding of RUNX family proteins. CBFB has two isoforms, and CBFB2 plays a major role in skeletal development. The calvaria, femurs, vertebrae and ribs in Cbfb2-/- mice were analyzed after birth, and compared with those in Runx2+/- mice. Calvarial development was impaired in Runx2+/- mice but mildly delayed in Cbfb2-/- mice. In femurs, the cortical bone but not trabecular bone was reduced in Cbfb2-/- mice, whereas both the trabecular and cortical bone were reduced in Runx2+/- mice. The trabecular bone in vertebrae increased in Cbfb2-/- mice but not in Runx2+/- mice. Rib development was impaired in Cbfb2-/- mice but not in Runx2+/- mice. These differences were likely caused by differences in the indispensability of CBFB and RUNX2, the balance of bone formation and resorption, or the number and maturation stage of osteoblasts. Thus, different amounts of CBFB and RUNX2 were required among the bone tissues for proper bone development and maintenance.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteoblastos , Animais , Camundongos , Diferenciação Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Costelas/metabolismo , Crânio/metabolismo , Coluna Vertebral/metabolismo
6.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628587

RESUMO

Runt-related transcription factor 2 (Runx2) is a fundamental transcription factor for bone development. In endochondral ossification, Runx2 induces chondrocyte maturation, enhances chondrocyte proliferation through Indian hedgehog (Ihh) induction, and induces the expression of vascular endothelial growth factor A (Vegfa), secreted phosphoprotein 1 (Spp1), integrin-binding sialoprotein (Ibsp), and matrix metallopeptidase 13 (Mmp13) in the terminal hypertrophic chondrocytes. Runx2 inhibits the apoptosis of the terminal hypertrophic chondrocytes and induces their transdifferentiation into osteoblasts and osteoblast progenitors. The transdifferentiation is required for trabecular bone formation during embryonic and newborn stages but is dispensable for acquiring normal bone mass in young and adult mice. Runx2 enhances the proliferation of osteoblast progenitors and induces their commitment to osteoblast lineage cells through the direct regulation of the expressions of a hedgehog, fibroblast growth factor (Fgf), Wnt, and parathyroid hormone-like hormone (Pthlh) signaling pathway genes and distal-less homeobox 5 (Dlx5), which all regulate Runx2 expression and/or protein activity. Runx2, Sp7, and Wnt signaling further induce osteoblast differentiation. In immature osteoblasts, Runx2 regulates the expression of bone matrix protein genes, including Col1a1, Col1a2, Spp1, Ibsp, and bone gamma carboxyglutamate protein (Bglap)/Bglap2, and induces osteoblast maturation. Osteocalcin (Bglap/Bglap2) is required for the alignment of apatite crystals parallel to the collagen fibers; however, it does not physiologically work as a hormone that regulates glucose metabolism, testosterone synthesis, or muscle mass. Thus, Runx2 exerts multiple functions essential for skeletal development.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Fator A de Crescimento do Endotélio Vascular , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas Hedgehog/genética , Hormônios , Sialoproteína de Ligação à Integrina , Camundongos , Osteogênese/genética , Fatores de Transcrição/metabolismo
7.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457191

RESUMO

Osteocytes connect with neighboring osteocytes and osteoblasts through their processes and form an osteocyte network. Shear stress on osteocytes, which is induced by fluid flow in the lacunae and canaliculi, has been proposed as an important mechanism for mechanoresponses. The lacunocanalicular structure is differentially developed in the compression and tension sides of femoral cortical bone and the compression side is more organized and has denser and thinner canaliculi. Mice with an impaired lacunocanalicular structure may be useful for evaluation of the relationship between lacunocanalicular structure and mechanoresponses, although their bone component cells are not normal. We show three examples of mice with an impaired lacunocanalicular structure. Ablation of osteocytes by diphtheria toxin caused massive osteocyte apoptosis, necrosis or secondary necrosis that occurred after apoptosis. Osteoblast-specific Bcl2 transgenic mice were found to have a reduced number of osteocyte processes and canaliculi, which caused massive osteocyte apoptosis and a completely interrupted lacunocanalicular network. Osteoblast-specific Sp7 transgenic mice were also revealed to have a reduced number of osteocyte processes and canaliculi, as well as an impaired, but functionally connected, lacunocanalicular network. Here, we show the phenotypes of these mice in physiological and unloaded conditions and deduce the relationship between lacunocanalicular structure and mechanoresponses.


Assuntos
Osso e Ossos , Osteócitos , Animais , Camundongos , Camundongos Transgênicos , Necrose , Osteoblastos , Estresse Mecânico
8.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328592

RESUMO

The relationship of lacunocanalicular network structure and mechanoresponse has not been well studied. The lacunocanalicular structures differed in the compression and tension sides, in the regions, and in genders in wild-type femoral cortical bone. The overexpression of Sp7 in osteoblasts resulted in thin and porous cortical bone with increased osteoclasts and apoptotic osteocytes, and the number of canaliculi was half of that in the wild-type mice, leading to a markedly impaired lacunocanalicular network. To investigate the response to unloading, we performed tail suspension. Unloading reduced trabecular and cortical bone in the Sp7 transgenic mice due to reduced bone formation. Sost-positive osteocytes increased by unloading on the compression side, but not on the tension side of cortical bone in the wild-type femurs. However, these differential responses were lost in the Sp7 transgenic femurs. Serum Sost increased in the Sp7 transgenic mice, but not in the wild-type mice. Unloading reduced the Col1a1 and Bglap/Bglap2 expression in the Sp7 transgenic mice but not the wild-type mice. Thus, Sp7 transgenic mice with the impaired lacunocanalicular network induced Sost expression by unloading but lost the differential regulation in the compression and tension sides, and the mice failed to restore bone formation during unloading, implicating the relationship of lacunocanalicular network structure and the regulation of bone formation in mechanoresponse.


Assuntos
Reabsorção Óssea , Osteócitos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Densidade Óssea , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Osteoblastos/metabolismo , Osteócitos/metabolismo , Fator de Transcrição Sp7/metabolismo
9.
Oncogene ; 41(5): 683-691, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34803166

RESUMO

Osteosarcoma (OS) in human patients is characterized by genetic alteration of TP53. Osteoprogenitor-specific p53-deleted mice (OS mice) have been widely used to study the process of osteosarcomagenesis. However, the molecular mechanisms responsible for the development of OS upon p53 inactivation remain largely unknown. In this study, we detected prominent RUNX3/Runx3 expression in human and mouse p53-deficient OS. Myc was aberrantly upregulated by Runx3 via mR1, a consensus Runx site in the Myc promoter, in a manner dependent on p53 deficiency. Reduction of the Myc level by disruption of mR1 or Runx3 knockdown decreased the tumorigenicity of p53-deficient OS cells and effectively suppressed OS development in OS mice. Furthermore, Runx inhibitors exerted therapeutic effects on OS mice. Together, these results show that p53 deficiency promotes osteosarcomagenesis in human and mouse by allowing Runx3 to induce oncogenic Myc expression.


Assuntos
Proteína Supressora de Tumor p53
10.
Commun Biol ; 4(1): 1258, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732852

RESUMO

Endochondral ossification is regulated by transcription factors that include SRY-box transcription factor 9, runt-related protein 2 (Runx2), and Osterix. However, the sequential and harmonious regulation of the multiple steps of endochondral ossification is unclear. This study identified zinc finger homeodomain 4 (Zfhx4) as a crucial transcriptional partner of Osterix. We found that Zfhx4 was highly expressed in cartilage and that Zfhx4 deficient mice had reduced expression of matrix metallopeptidase 13 and inhibited calcification of cartilage matrices. These phenotypes were very similar to impaired chondrogenesis in Osterix deficient mice. Coimmunoprecipitation and immunofluorescence indicated a physical interaction between Zfhx4 and Osterix. Notably, Zfhx4 and Osterix double mutant mice showed more severe phenotype than Zfhx4 deficient mice. Additionally, Zfhx4 interacted with Runx2 that functions upstream of Osterix. Our findings suggest that Zfhx4 coordinates the transcriptional network of Osterix and, consequently, endochondral ossification.


Assuntos
Proteínas de Homeodomínio/genética , Osteogênese/genética , Fator de Transcrição Sp7/genética , Animais , Proteínas de Homeodomínio/metabolismo , Camundongos , Fator de Transcrição Sp7/metabolismo
11.
Commun Biol ; 4(1): 1199, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667264

RESUMO

Runx2 is an essential transcription factor for bone formation. Although osteocalcin, osteopontin, and bone sialoprotein are well-known Runx2-regulated bone-specific genes, the skeletal phenotypes of knockout (KO) mice for these genes are marginal compared with those of Runx2 KO mice. These inconsistencies suggest that unknown Runx2-regulated genes play important roles in bone formation. To address this, we attempted to identify the Runx2 targets by performing RNA-sequencing and found Smoc1 and Smoc2 upregulation by Runx2. Smoc1 or Smoc2 knockdown inhibited osteoblastogenesis. Smoc1 KO mice displayed no fibula formation, while Smoc2 KO mice had mild craniofacial phenotypes. Surprisingly, Smoc1 and Smoc2 double KO (DKO) mice manifested no skull, shortened tibiae, and no fibulae. Endochondral bone formation was also impaired at the late stage in the DKO mice. Collectively, these results suggest that Smoc1 and Smoc2 function as novel targets for Runx2, and play important roles in intramembranous and endochondral bone formation.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica no Desenvolvimento , Osteogênese/genética , Osteonectina/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Camundongos , Camundongos Knockout , Osteonectina/metabolismo
12.
Sci Rep ; 11(1): 13674, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211084

RESUMO

Runt-related transcription factor 2 (Runx2)-deficient mice can be used to model congenital tooth agenesis in humans. Conversely, uterine sensitization-associated gene-1 (Usag-1)-deficient mice exhibit supernumerary tooth formation. Arrested tooth formation can be restored by crossing both knockout-mouse strains; however, it remains unclear whether topical inhibition of Usag-1 expression can enable the recovery of tooth formation in Runx2-deficient mice. Here, we tested whether inhibiting the topical expression of Usag-1 can reverse arrested tooth formation after Runx2 abrogation. The results showed that local application of Usag-1 Stealth small interfering RNA (siRNA) promoted tooth development following Runx2 siRNA-induced agenesis. Additionally, renal capsule transplantation of siRNA-loaded cationized, gelatin-treated mouse mandibles confirmed that cationized gelatin can serve as an effective drug-delivery system. We then performed renal capsule transplantation of wild-type and Runx2-knockout (KO) mouse mandibles, treated with Usag-1 siRNA, revealing that hindered tooth formation was rescued by Usag-1 knockdown. Furthermore, topically applied Usag-1 siRNA partially rescued arrested tooth development in Runx2-KO mice, demonstrating its potential for regenerating teeth in Runx2-deficient mice. Our findings have implications for developing topical treatments for congenital tooth agenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Odontogênese , RNA Interferente Pequeno/genética , Dente/crescimento & desenvolvimento , Animais , Regulação da Expressão Gênica no Desenvolvimento , Mandíbula/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia , Regeneração , Dente/fisiologia
13.
J Bone Miner Res ; 36(10): 2081-2095, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34101902

RESUMO

Runt-related transcription factor-2 (Runx2) is an essential transcription factor for osteoblast differentiation. However, its functions after the commitment into osteoblasts are controversial and remain to be clarified. We generated enhanced green fluorescent protein (EGFP)-Cre transgenic mice driven by the 2.3-kilobase (kb) Col1a1 promoter, and Runx2 was deleted in osteoblasts and odontoblasts in Runx2fl/flCre mice. The sutures and fontanelles were more widely opened in Runx2fl/flCre newborns than in Runx2fl/fl newborns. Runx2fl/flCre mice exhibited dwarfism with shorter incisors and 37% had irregularly aligned incisors. The volume of trabecular bone in femurs and vertebrae and their bone mineral density (BMD), in addition to the cortical thickness and BMD were reduced in Runx2fl/flCre mice compared with Runx2fl/fl mice in both sexes. The bone formation of both trabecular and cortical bone, osteoblast number, osteoclast surface, osteoblast proliferation, and the serum levels of procollagen type 1 N-terminal propeptide (P1NP), tartrate-resistant acid phosphatase 5b (TRAP5b), and C-terminal cross-linked telopeptide of type 1 collagen (CTX1) were reduced in Runx2fl/flCre mice. The expression of major bone matrix protein genes, including Col1a1, Col1a2, Spp1, Ibsp, and Bglap&Bglap2, and of Tnfsf11 was lower in Runx2fl/flCre mice than in Runx2fl/fl mice. The expression of Runx2 target genes, including Ihh, Fgfr1, Fgfr2, Fgfr3, Tcf7, Wnt10b, Pth1r, Sp7, and Dlx5, was also reduced. Osteoblasts in Runx2fl/fl mice were cuboidal and contained abundant type I collagen α1 (Col1a1), whereas those in Runx2fl/flCre mice were deflated and contained a small amount of Col1a1. Runx2 activated the reporter activity of the 2.3-kb Col1a1 promoter and bound the region around the Col1a1 transcription start site. The deletion of Runx2 by Cre-expressing adenovirus in Runx2fl/fl primary osteoblasts impaired osteoblast differentiation and the expression of genes encoding major bone matrix proteins, and osteoclastogenesis was inhibited due to the reduction of Tnfsf11 expression in the osteoblasts. This study demonstrated that Runx2 is required for the expression of the major bone matrix protein genes and Tnfsf11 after commitment into osteoblasts in mice. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Matriz Óssea , Subunidade alfa 1 de Fator de Ligação ao Core , Animais , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Osteoblastos , Fatores de Transcrição
14.
Commun Biol ; 4(1): 326, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707608

RESUMO

Endochondral bone formation is fundamental for skeletal development. During this process, chondrocytes undergo multiple steps of differentiation and coordinated transition from a proliferating to a hypertrophic stage, which is critical to advance skeletal development. Here, we identified the transcription factor Dmrt2 (double-sex and mab-3 related transcription factor 2) as a Sox9-inducible gene that promotes chondrocyte hypertrophy in pre-hypertrophic chondrocytes. Epigenetic analysis further demonstrated that Sox9 regulates Dmrt2 expression through an active enhancer located 18 kb upstream of the Dmrt2 gene and that this enhancer's chromatin status is progressively activated through chondrocyte differentiation. Dmrt2-knockout mice exhibited a dwarf phenotype with delayed initiation of chondrocyte hypertrophy. Dmrt2 augmented hypertrophic chondrocyte gene expression including Ihh through physical and functional interaction with Runx2. Furthermore, Dmrt2 deficiency reduced Runx2-dependent Ihh expression. Our findings suggest that Dmrt2 is critical for sequential chondrocyte differentiation during endochondral bone formation and coordinates the transcriptional network between Sox9 and Runx2.


Assuntos
Osso e Ossos/metabolismo , Condrócitos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nanismo/metabolismo , Osteogênese , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição/metabolismo , Animais , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Linhagem Celular Tumoral , Condrócitos/patologia , Condrogênese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Nanismo/genética , Nanismo/patologia , Nanismo/fisiopatologia , Epigênese Genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hipertrofia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição SOX9/genética , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica
16.
PLoS Genet ; 16(11): e1009169, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253203

RESUMO

Chondrocytes proliferate and mature into hypertrophic chondrocytes. Vascular invasion into the cartilage occurs in the terminal hypertrophic chondrocyte layer, and terminal hypertrophic chondrocytes die by apoptosis or transdifferentiate into osteoblasts. Runx2 is essential for osteoblast differentiation and chondrocyte maturation. Runx2-deficient mice are composed of cartilaginous skeletons and lack the vascular invasion into the cartilage. However, the requirement of Runx2 in the vascular invasion into the cartilage, mechanism of chondrocyte transdifferentiation to osteoblasts, and its significance in bone development remain to be elucidated. To investigate these points, we generated Runx2fl/flCre mice, in which Runx2 was deleted in hypertrophic chondrocytes using Col10a1 Cre. Vascular invasion into the cartilage was similarly observed in Runx2fl/fl and Runx2fl/flCre mice. Vegfa expression was reduced in the terminal hypertrophic chondrocytes in Runx2fl/flCre mice, but Vegfa was strongly expressed in osteoblasts in the bone collar, suggesting that Vegfa expression in bone collar osteoblasts is sufficient for vascular invasion into the cartilage. The apoptosis of terminal hypertrophic chondrocytes was increased and their transdifferentiation was interrupted in Runx2fl/flCre mice, leading to lack of primary spongiosa and osteoblasts in the region at E16.5. The osteoblasts appeared in this region at E17.5 in the absence of transdifferentiation, and the number of osteoblasts and the formation of primary spongiosa, but not secondary spongiosa, reached to levels similar those in Runx2fl/fl mice at birth. The bone structure and volume and all bone histomophometric parameters were similar between Runx2fl/fl and Runx2fl/flCre mice after 6 weeks of age. These findings indicate that Runx2 expression in terminal hypertrophic chondrocytes is not required for vascular invasion into the cartilage, but is for their survival and transdifferentiation into osteoblasts, and that the transdifferentiation is necessary for trabecular bone formation in embryonic and neonatal stages, but not for acquiring normal bone structure and volume in young and adult mice.


Assuntos
Transdiferenciação Celular/genética , Condrócitos/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/fisiologia , Osteogênese/genética , Fatores Etários , Animais , Apoptose/genética , Osso Esponjoso/citologia , Osso Esponjoso/embriologia , Osso Esponjoso/crescimento & desenvolvimento , Cartilagem/irrigação sanguínea , Cartilagem/citologia , Cartilagem/metabolismo , Sobrevivência Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Periósteo/citologia , Periósteo/embriologia , Periósteo/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053789

RESUMO

Osteocalcin (Ocn), which is specifically produced by osteoblasts, and is the most abundant non-collagenous protein in bone, was demonstrated to inhibit bone formation and function as a hormone, which regulates glucose metabolism in the pancreas, testosterone synthesis in the testis, and muscle mass, based on the phenotype of Ocn-/- mice by Karsenty's group. Recently, Ocn-/- mice were newly generated by two groups independently. Bone strength is determined by bone quantity and quality. The new Ocn-/- mice revealed that Ocn is not involved in the regulation of bone formation and bone quantity, but that Ocn regulates bone quality by aligning biological apatite (BAp) parallel to the collagen fibrils. Moreover, glucose metabolism, testosterone synthesis and spermatogenesis, and muscle mass were normal in the new Ocn-/- mice. Thus, the function of Ocn is the adjustment of growth orientation of BAp parallel to the collagen fibrils, which is important for bone strength to the loading direction of the long bone. However, Ocn does not play a role as a hormone in the pancreas, testis, and muscle. Clinically, serum Ocn is a marker for bone formation, and exercise increases bone formation and improves glucose metabolism, making a connection between Ocn and glucose metabolism.


Assuntos
Osso e Ossos/metabolismo , Músculos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Pâncreas/metabolismo , Testículo/metabolismo , Animais , Biomarcadores , Exercício Físico , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Masculino , Fenômenos Mecânicos , Especificidade de Órgãos , Osteogênese/genética , Transdução de Sinais
18.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545161

RESUMO

Chondrocyte biology is a hot topic, because osteoarthritis (OA) is a serious problem in an aging society, but there are no fundamental therapeutic drugs [...].


Assuntos
Condrócitos/patologia , Condrócitos/fisiologia , Osteoartrite/patologia , Animais , Regulação da Expressão Gênica , Humanos , Osteoartrite/tratamento farmacológico , Osteocondrose/metabolismo , Osteocondrose/patologia
19.
J Oral Biosci ; 62(3): 223-227, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32535287

RESUMO

BACKGROUND: Osteocalcin is the most abundant non-collagenous protein in bone and is specifically expressed in osteoblasts. Previous studies using osteocalcin-deficient (Ocn-/-) mice demonstrated that osteocalcin inhibits bone formation, and serum uncarboxylated osteocalcin functions as a hormone that improves glucose metabolism, induces testosterone synthesis in the testes, and maintains muscle mass. Furthermore, the relationship between serum osteocalcin and glucose metabolism or cardiovascular risk in humans has been reported. However, new Ocn-/- mice exhibited different phenotypes. HIGHLIGHT: Bone volume, formation, and resorption were normal in the new Ocn-/- mice. The orientation of collagen fibers was parallel to the bone longitudinal direction and the size of apatite crystals was normal, but the c-axis of apatite crystals was random and bone strength was reduced in new Ocn-/- mice. Glucose metabolism, testosterone synthesis, and muscle mass were normal in new Ocn-/- mice. Exercise improved glucose metabolism and increased bone formation, leading to an increase in the serum osteocalcin level, which is a marker for bone formation. CONCLUSION: Contrary to previous findings, new Ocn-/- mice revealed that osteocalcin has no function in the regulation of bone quantity, but instead, functions to direct the parallel alignment of the c-axis of apatite crystals with collagen fibrils. Moreover, it has no physiological function as a hormone that regulates glucose metabolism, testosterone synthesis, or muscle mass. These controversial phenotypes require further investigation. The relationship of serum osteocalcin with glucose metabolism or cardiovascular risk suggests the importance of exercise for their improvement.


Assuntos
Osso e Ossos , Osteoblastos , Animais , Apatitas , Masculino , Camundongos , Osteocalcina , Osteogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA