Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; : e14214, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096077

RESUMO

AIMS: Endothelin-1 (ET-1) is elevated in patients with obesity and adipose tissue of obese mice fed high-fat diet (HFD); however, its contribution to the pathophysiology of obesity is not fully understood. Genetic loss of endothelin type B receptors (ETB) improves insulin sensitivity in rats and leads to increased circulating adiponectin, suggesting that ETB activation on adipocytes may contribute to obesity pathophysiology. We hypothesized that elevated ET-1 in obesity promotes insulin resistance by reducing the secretion of insulin sensitizing adipokines, via ETB receptor. METHODS: Male adipocyte-specific ETB receptor knockout (adETBKO), overexpression (adETBOX), or control littermates were fed either normal diet (NMD) or high-fat diet (HFD) for 8 weeks. RESULTS: RNA-sequencing of epididymal adipose (eWAT) indicated differential expression of over 5500 genes (p < 0.05) in HFD compared to NMD controls, and changes in 1077 of these genes were attenuated in HFD adETBKO mice. KEGG analysis indicated significant increase in metabolic signaling pathway. HFD adETBKO mice had significantly improved glucose and insulin tolerance compared to HFD control. In addition, adETBKO attenuated changes in plasma adiponectin, insulin, and leptin that is observed in HFD versus NMD control mice. Treatment of primary adipocytes with ET-1 caused a reduction in adiponectin production that was attenuated in cells pretreated with an ETB antagonist. CONCLUSION: These data indicate elevated ET-1 in adipose tissue of mice fed HFD inhibits adiponectin production and causes insulin resistance through activation of the ETB receptor on adipocytes.

2.
STAR Protoc ; 5(2): 103086, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38795351

RESUMO

During development, the zebrafish embryo relies on its yolk sac as a nutrient source. Here, we present a protocol for modifying the free fatty acid (FFA) and triacylglycerol (TAG) content of the zebrafish yolk sac by microinjection. We describe steps for needle and injection mold preparation, FFA and TAG solution preparation, and microinjection. This protocol can elucidate how excesses of FFA and TAG affect development and modify the transcriptome of zebrafish embryos. For complete details on the use and execution of this protocol, please refer to Konadu et al. 1.


Assuntos
Embrião não Mamífero , Ácidos Graxos não Esterificados , Microinjeções , Triglicerídeos , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Microinjeções/métodos , Triglicerídeos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Embrião não Mamífero/metabolismo , Saco Vitelino/metabolismo
3.
Front Physiol ; 14: 1272366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781232

RESUMO

Introduction: Mitochondrial dysfunction is linked to a variety of human diseases. Understanding the dynamic alterations in mitochondrial respiration at various stages of development is important to our understanding of disease progression. Zebrafish provide a system for investigating mitochondrial function and alterations during different life stages. The purpose of this study was to investigate our ability to measure mitochondrial oxygen consumption rates in zebrafish embryos, larvae, and adults as an indicator of mitochondrial function. Methods: Basal respiration of entire zebrafish embryos (5 dpf), larvae (0.6-0.9 cm), young adults (3-month-old), and old adults (12-month-old) was measured using an Oroboros Oxygraph, with a stirrer speed of 26 rpm. For embryos and larvae, "leak" respiration (plus oligomycin), maximum respiration (plus uncoupler), non-mitochondrial respiration (plus inhibitors), and complex IV activity were also measured. To induce physical activity in adult fish, the stirrer speed was increased to 200 rpm. Results and Discussion: We demonstrate the ability to accurately measure respiration rates in zebrafish at various ages using the Oroboros Oxygraph. When comparing zebrafish embryos to larvae, embryos have a higher maximum respiration. Three-month-old zebrafish males have higher basal respiration than females, while 12-month-old zebrafish females exhibit greater rates of respiration than males and younger females. When the stirrer speed was increased, respiration rates decrease, but with differences depending on sex. This study demonstrates a simple and accessible method to assess zebrafish physiology by mitochondrial oxygen consumption measurements in an unmodified Oroboros Oxygraph. The method should facilitate studies to understand the intricate interplay between mitochondrial function, development, and aging.

4.
iScience ; 26(7): 107063, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534154

RESUMO

Zebrafish embryos use their yolk sac reserve as the sole nutrient source during embryogenesis. The two main forms of energy fuel can be found in the form of glucose or fat. Zebrafish embryos were exposed to glucose or injected with free fatty acid/Triacylglycerol (FFA/TAG) into the yolk sac at 24 hpf. At 72 hpf, glucose exposed or FFA/TAG injected had differential effects on gene expression in embryos, with fat activating lipolysis and ß-oxidation and glucose activating the insulin pathway. Bulk RNA-seq revealed that more gene expression was affected by glucose exposure compared to FFA/TAGs injection. Appetite-controlling genes were also differently affected by glucose exposure or FFA/TAG injections. Because the embryo did not yet feed itself at the time of our analysis, gene expression changes occurred in absence of actual hunger and revealed how the embryo manages its nutrient intake before active feeding.

5.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077087

RESUMO

Embryonic hyperglycemia negatively impacts retinal development, leading to abnormal visual behavior, altered timing of retinal progenitor differentiation, decreased numbers of retinal ganglion cells and Müller glia, and vascular leakage. Because synaptic disorganization is a prominent feature of many neurological diseases, the goal of the current work was to study the potential impact of hyperglycemia on retinal ribbon synapses during embryonic development. Our approach utilized reverse transcription quantitative PCR (RT-qPCR) and immunofluorescence labeling to compare the transcription of synaptic proteins and their localization in hyperglycemic zebrafish embryos, respectively. Our data revealed that the maturity of synaptic ribbons was compromised in hyperglycemic zebrafish larvae, where altered ribeye expression coincided with the delay in establishing retinal ribbon synapses and an increase in the immature synaptic ribbons. Our results suggested that embryonic hyperglycemia disrupts retinal synapses by altering the development of the synaptic ribbon, which can lead to visual defects. Future studies using zebrafish models of hyperglycemia will allow us to study the underlying mechanisms of retinal synapse development.


Assuntos
Hiperglicemia , Peixe-Zebra , Animais , Hiperglicemia/metabolismo , Retina/metabolismo , Sinapses/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
6.
J Comp Physiol B ; 189(2): 179-198, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30810797

RESUMO

Obesity predisposes humans to a range of life-threatening comorbidities, including type 2 diabetes and cardiovascular disease. Obesity also aggravates neural pathologies, such as Alzheimer's disease, but this class of comorbidity is less understood. When Drosophila melanogaster (flies) are exposed to high-fat diet (HFD) by supplementing a standard medium with coconut oil, they adopt an obese phenotype of decreased lifespan, increased triglyceride storage, and hindered climbing ability. The latter development has been previously regarded as a potential indicator of neurological decline in fly models of neurodegenerative disease. Our objective was to establish the obesity phenotype in Drosophila and identify a potential correlation, if any, between obesity and neurological decline through behavioral assays and gene expression microarray. We found that mated female w1118 flies exposed to HFD maintained an obese phenotype throughout adult life starting at 7 days, evidenced by increased triglyceride stores, diminished life span, and impeded climbing ability. While climbing ability worsened cumulatively between 7 and 14 days of exposure to HFD, there was no corresponding alteration in triglyceride content. Microarray analysis of the mated female w1118 fly head revealed HFD-induced changes in expression of genes with functions in memory, metabolism, olfaction, mitosis, cell signaling, and motor function. Meanwhile, an Aversive Phototaxis Suppression assay in mated female flies indicated reduced ability to recall an entrained memory 6 h after training. Overall, our results support the suitability of mated female flies for examining connections between diet-induced obesity and nervous or neurobehavioral pathology, and provide many directions for further investigation.


Assuntos
Dieta Hiperlipídica , Drosophila melanogaster/fisiologia , Expressão Gênica , Memória , Obesidade/complicações , Animais , Drosophila melanogaster/genética , Feminino , Cabeça , Atividade Motora , Obesidade/genética , Obesidade/fisiopatologia , Fenótipo , Olfato/genética , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA