Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
AAPS PharmSciTech ; 25(1): 15, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200167

RESUMO

This research aimed to explore the possibilities of Eudragit S100 (ES100) and sodium alginate as carriers for tenofovir disoproxil fumarate (TDF) in the female genital tract. Alginate and alginate-ES100 nanoparticles were prepared using the ionic gelation and emulsion/gelation complexation method, respectively. The nanocarriers were tested using morphological, physicochemical, in vitro drug release, and cytotoxicity analyses. In SEM and TEM images, the presence of spherical and uniformly distributed nanoparticles was revealed. The FTIR spectrum showed that alginate and calcium chloride interacted due to ionic bonds linking divalent calcium ions and the -COO- of alginate groups. Alginate and ES100 interacted via the ester C=O amide stretching. The results obtained from XRD and DSC, on the other hand, revealed a favorable interaction between sodium alginate and ES100 polymers, as evidenced by the crystallization peaks observed. Under experimental design analysis and optimization, overall size distribution profiles ranged from 134.9 to 228.0 nm, while zeta potential results showed stable nanoparticles (-17.8 to -38.4 MV). The optimal formulation exhibited a maximum cumulative in vitro release of 72% (pH 4.2) up to 96 h. The cytotoxicity tests revealed the safety of TDF-loaded nanoparticles on vaginal epithelial cells at concentrations of 0.025 mg/mL, 0.5 mg/mL, and 1 mg/mL for 72 h. These results indicated that alginate-ES100 nanoparticles have the potential to preserve and sustain the release of the TDF drug in the FGT. The future goal is to develop a low-dose non-toxic microbicide that can be administered long term in the vagina to cater to both pregnant and non-pregnant HIV patients.


Assuntos
Infecções por HIV , Ácidos Polimetacrílicos , Gravidez , Feminino , Humanos , Tenofovir , Infecções por HIV/tratamento farmacológico , Genitália Feminina , Alginatos
2.
Biomedicines ; 11(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37760986

RESUMO

The optimal treatment of diabetes (in particular, type 1 diabetes-T1D) remains a challenge. Closed-loop systems (implants/inserts) provide significant advantages for glucose responsivity and providing real-time sustained release of rapid-acting insulin. Concanavalin A (ConA), a glucose affinity agent, has been used to design closed-loop insulin delivery systems but not without significant risk of leakage of ConA from the matrices and poor mechanical strength of the hydrogels impacting longevity and control of insulin release. Therefore, this work focused on employing a thermoresponsive co-forming matrix between Pluronic F-127 (PL) and structurally robust chitosan (CHT) via EDC/NHS coupling (i.e., covalent linkage of -NH2 from CHT and ConA to the -COOH of PL). The system was characterized for its chemical structure stability and integrity (FTIR, XRD and TGA), injectability, rheological parameters and hydrogel morphology (Texture Analysis, Elastosens TM Bio2 and SEM). The prepared hydrogels demonstrated shear-thinning for injectability with a maximum force of 4.9 ± 8.3 N in a 26G needle with sol-gel transitioning from 25 to 38 °C. The apparent yield stress value of the hydrogel was determined to be 67.47 Pa. The insulin loading efficiency within the hydrogel matrix was calculated to be 46.8%. Insulin release studies revealed glucose responsiveness in simulated glycemic media (4 and 10 mg/mL) over 7 days (97%) (305 nm via fluorescence spectrophotometry). The MTT studies were performed over 72 h on RIN-5F pancreatic cells with viability results >80%. Results revealed that the thermoresponsive hydrogel is a promising alternative to current closed-loop insulin delivery systems.

3.
Biomedicines ; 11(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37509497

RESUMO

The purpose of the study was to synthesize and investigate the influence of geometrical structure, magnetism, and cytotoxic activity on core-shell platinum and iron-platinum (Fe/Pt) composite nanowires (NWs) for potential application in targeted chemotherapeutic approaches. The Pt-NWs and Fe/Pt composite NWs were synthesized via template electrodeposition, using anodic aluminum oxide (AAO) membranes. The Fe/Pt composite NWs (Method 1) was synthesized using two electrodeposition steps, allowing for greater control of the diameter of the NW core. The Fe/Pt composite NWs (Method 2) was synthesized by pulsed electrodeposition, using a single electrolytic bath. The properties of the synthesized NWs were assessed by high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, powder X-ray diffraction (XRD), inductively coupled plasma-optical emission spectrometry (ICP-OES), vibrating-sample magnetometry (VSM), and surface charge (zeta potential). A microscopy image analysis of the NWs revealed the presence of high-aspect-ratio NWs with nominal diameters of 40-50 nm and lengths of approximately <4 µm. The obtained powder XRD patterns confirmed the presence of a polycrystalline structure for both Pt NWs and Fe/Pt composite NWs. The potential utility of the synthesized NW nanoplatforms for anticancer activity was investigated using Tera 1 cells and Mouse 3T3 cells. Pt-NWs displayed modest cytotoxic activity against Tera 1 cells, while the Fe/Pt composite NWs (both Methods 1 and 2) demonstrated enhanced cytotoxic activity compared to the Pt-NWs on Tera 1 cells. The Fe/Pt composite NWs (Method 1) displayed ferromagnetic behavior and enhanced cytotoxic activity compared to Pt-NWs on Tera 1 cells, thus providing a sound basis for future magnetically targeted chemotherapeutic applications.

4.
Biomedicines ; 11(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37189819

RESUMO

Nanoparticles are designed to entrap drugs at a high concentration, escape clearance by the immune system, be selectively taken up by cancer cells, and release bioactives in a rate-modulated manner. In this study, quercetin-loaded PLGA nanoparticles were prepared and optimized to determine whether coating with chitosan would increase the cellular uptake of the nanoparticles and if the targeting ability of folic acid as a ligand can provide selective toxicity and enhanced uptake in model LnCap prostate cancer cells, which express high levels of the receptor prostate-specific membrane antigen (PSMA), compared to PC-3 cells, that have relatively low PSMA expression. A design of experiments approach was used to optimize the PLGA nanoparticles to have the maximum quercetin loading, optimal cationic charge, and folic acid coating. We examined the in vitro release of quercetin and comparative cytotoxicity and cellular uptake of the optimized PLGA nanoparticles and revealed that the targeted nano-system provided sustained, pH-dependent quercetin release, and higher cytotoxicity and cellular uptake, compared to the non-targeted nano-system on LnCap cells. There was no significant difference in the cytotoxicity or cellular uptake between the targeted and non-targeted nano-systems on PC-3 cells (featured by low levels of PSMA), pointing to a PSMA-specific mechanism of action of the targeted nano-system. The findings suggest that the nano-system can be used as an efficient nanocarrier for the targeted delivery and release of quercetin (and other similar chemotherapeutics) against prostate cancer cells.

5.
Pharmaceutics ; 14(12)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36559335

RESUMO

As one of the most cutting-edge and promising polymer crosslinked network nanoparticle systems. Polymer nano-sized hydrogels (nanogels) have been a hot topic in the biomedical field over the last few decades. Due to their unique characteristics, which include their relatively high drug encapsulation efficiency, ease of preparation, high tunability, low toxicity, high stability in serum and responsive behavior to a range of stimuli to facilitate drug release. Nanogels are thought to be the next generation of drug delivery systems that can completely change the way that drug delivery systems have an impact on patients' lives. Nanogels have demonstrated significant potential in a variety of fields, including chemotherapy, diagnosis, organ targeting, and delivery of bioactive molecules of different dimensions. However, the lack of substantial clinical data from nanogels becomes one of the major barriers to translating the nanogel concept into a practical therapeutic application for many disease conditions. In addition, nanogel safety profiles have been the major concern that hinders it advancement to the clinical trial phase. This review aims to emphasize the unique properties of nanogels as delivery systems for a variety of bioactive molecules over other nano-delivery systems. Also, this review attempts to give insight into the recent progress in nanogels as a carrier in the field of nanomedicine to overcome complex biological barriers. Relevant scientific data and clinical rationale for the development and the potential use of nanogel as a carrier for targeted therapeutic interventions are discussed. Finally, the concluding points of this review highlight the importance of understanding the long-term toxicity profile of nanogel within the biological system to fully understand their biocompatibility.

6.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012770

RESUMO

This study aimed to develop and assess the long-term stability of drug-loaded solid lipid nanoparticles (SLNs). The SLNs were designed to extend the release profile, overcome the problems of bioavailability and solubility, investigate toxicity, and improve the antischistosomal efficacy of praziquantel. The aim was pursued using solvent injection co-homogenization techniques to fabricate SLNs in which Compritol ATO 888 and lecithin were used as lipids, and Pluronic F127 (PF127) was used as a stabilizer. The long-term stability effect of the PF127 as a stabilizer on the SLNs was evaluated. Dynamic light scattering (DLS) was used to determine the particle size, stability, and polydispersity. The morphology of the SLNs was examined through the use of transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The chemical properties, as well as the mechanical, thermal, and crystal behaviours of SLNs were evaluated using FTIR, ElastoSens Bio2, XRPD, DSC, and TGA, respectively. SLNs with PF127 depicted an encapsulation efficiency of 71.63% and a drug loading capacity of 11.46%. The in vitro drug release study for SLNs with PF127 showed a cumulative release of 48.08% for the PZQ within 24 h, with a similar release profile for SLNs' suspension after 120 days. DLS, ELS, and optical characterization and stability profiling data indicate that the addition of PF127 as the surfactants provided long-term stability for SLNs. In vitro cell viability and in vivo toxicity evaluation signify the safety of SLNs stabilized with PF127. In conclusion, the parasitological data showed that in S. mansoni-infected mice, a single (250 mg/kg) oral dosage of CLPF-SLNs greatly improved PZQ antischistosomal efficacy both two and four weeks post-infection. Thus, the fabricated CLPF-SLNs demonstrated significant efficiency inthe delivery of PZQ, and hence are a promising therapeutic strategy against schistosomiasis.


Assuntos
Nanopartículas , Praziquantel , Animais , Modelos Animais de Doenças , Portadores de Fármacos/química , Lipídeos/química , Lipossomos , Camundongos , Nanopartículas/química , Tamanho da Partícula , Praziquantel/química , Praziquantel/farmacologia , Praziquantel/uso terapêutico
7.
Biomedicines ; 10(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35884775

RESUMO

High-dose methotrexate (HDMTX) is one of the chemotherapeutic agents used to treat a variety of cancers in both adults and children. However, the toxicity associated with HDMTX has resulted in the spread of infections and treatment interruption. Further, poor bioavailability due to efflux pump activities mediated by P-glycoprotein has also been linked to poor therapeutic effects of methotrexate following oral administrations. D-α-Tocopheryl poly-ethylene glycol 1000 succinate (TPGS) is known to improve the bioavailability of poorly soluble drugs by inhibiting P-gp efflux activities, thus enhancing cellular uptake. Therefore, to achieve improved bioavailability for MTX, this study aimed to design and develop a novel drug delivery system employing TPGS and a biodegradable polymer, i.e., PLGA, to construct methotrexate-loaded nanoparticles fixated in alginate-gelatine 3D printable hydrogel ink to form a solid 3D printed tablet for oral delivery. The results indicated that high accuracy (>95%) of the 3D printed tablets was achieved using a 25 G needle. In vitro, drug release profiles were investigated at pH 1.2 and pH 7.4 to simulate the gastrointestinal environment. The in vitro release profile displayed a controlled and prolonged release of methotrexate over 24 h. The in silico modeling study displayed P-gp ATPase inhibition, suggesting enhanced MTX absorption from the gastrointestinal site. The 3D-printed hydrogel-based tablet has the potential to overcome the chemotherapeutic challenges that are experienced with conventional therapies.

8.
Pharmaceutics ; 14(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893786

RESUMO

This study employed nanotechnological techniques to design and develop a praziquantel nanoliposomal (NLP) system and surface-functionalized the NLP with anti-calpain antibody (anti-calpain-NLP) for targeted praziquantel (PZQ) delivery in the treatment of schistosomiasis. Anti-calpain-NLPs were prepared and validated for their physicochemical parameters, in vitroand in vivotoxicity, drug entrapment efficiency (DEE), drug loading capacity (DLC), drug release, and parasitological cure rate. The particle sizes for the formulated nanoliposomes ranged from 88.3 to 92.7 nm (PDI = 0.17-0.35), and zeta potential ranged from -20.2 to -31.9 mV. The DLC and DEE ranged from 9.03 to 14.16 and 92.07 to 94.63, respectively. The functionalization of the nanoliposome surface was stable, uniform, and spherical. Fourier-transform infrared (FTIR), thermal behavior and X-ray powder diffraction (XRPD) analysis confirmed that the anti-calpain antibody and PZQ were attached to the surface and the nanoliposomes inner core, respectively. The drug sustained release was shown to be 93.2 and 91.1% within 24 h for NLP and anti-calpain-NLP, respectively. In thein vitroanalysis study, the nanoliposome concentrations range of 30 to 120 µg/mL employed revealed acceptable levels of cell viability, with no significant cytotoxic effects on RAW 264.7 murine macrophage as well as 3T3 human fibroblast cells. Biochemical markers and histopathological analysis showed that the formulated nanoliposomes present no or minimal oxidative stress and confer hepatoprotective effects on the animals. The cure rate of the anti-calpain-NLP and PZQ was assessed by parasitological analysis, and it was discovered that treatment with 250 mg/kg anti-calpain-NLP demonstrated greater activity on the total worm burden, and ova count for both the juvenile and adult schistosomes in the intestine and liver of infected mice. The findings so obtained supported the ability of oral anti-calpain-NLP to target young and adult schistosomes in the liver and porto-mesenteric locations, resulting in improved effectiveness of PZQ.

9.
Polymers (Basel) ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808678

RESUMO

Psoriasis vulgaris (PV) is a common chronic disease, affecting much of the population. Hydrocortisone (HCT) is currently utilized as a PV treatment; however, it is associated with undesirable side effects. The aim of this research was to create a thermo-responsive nano-hydrogel delivery system. HCT-loaded sorbitan monostearate (SMS)-polycaprolactone (PCL) nanoparticles, encapsulated with thermo-responsive hydrogel carboxymethyl cellulose (CMC), were synthesized by applying the interfacial polymer-deposition method following solvent displacement. The nanoparticles' properties were evaluated employing Differential Scanning Colorimetry, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Zeta sizer, Ultraviolet/Visual spectroscopy, and cytotoxicity testing. The nanoparticle sizes were 110.5 nm, with polydispersity index of 0.15 and zeta potential of -58.7 mV. A drug-entrapment efficacy of 76% was attained by the HCT-loaded SMS-PCL nanoparticles and in vitro drug-release profiles showed continuous drug release over a period of 24 hrs. Keratinocyte skin cells were treated with HCT-loaded SMS-PCL nanoparticles encapsulated with CMC; the results indicated that the synthesized drug-delivery system was less toxic to the keratinocyte cells compared to HCT. The combined trials and results from the formulation of HCT-loaded SMS-PCL nanoparticles encapsulated with CMC showed evidence that this hydrogel can be utilized as a potentially invaluable formulation for transdermal drug delivery of HCT, with improved efficacy and patient conformity.

10.
Pharmaceutics ; 14(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35456536

RESUMO

Current cannabidiol (CBD) formulations are challenged with unpredictable release and absorption. Rational design of a rectal colloid delivery system can provide a practical alternative. In this study the inherent physiochemical properties of transferosomes were harnessed for the development of a nano-sized transfersomes to yield more stable release, absorption, and bioavailability of CBD as a rectal colloid. Transfersomes composed of soya lecithin, cholesterol, and polysorbate 80 were synthesized via thin film evaporation and characterized for size, entrapment efficiency (%), morphology, CBD release, ex vivo permeation, and physicochemical stability. The optimized formulation for rectal delivery entrapped up to 80.0 ± 0.077% of CBD with a hydrodynamic particle size of 130 nm, a PDI value of 0.285, and zeta potential of -15.97 mV. The morphological investigation via SEM and TEM revealed that the transfersomes were spherical and unilamellar vesicles coinciding with the enhanced ex vivo permeation across the excised rat colorectal membrane. Furthermore, transfersomes improved the stability of the encapsulated CBD for up to 6 months at room temperature and showed significant promise that the transfersomes promoted rectal tissue permeation with superior stability and afforded tunable release kinetics of CBD as a botanical therapeutic with inherent poor bioavailability.

11.
J Biomed Mater Res B Appl Biomater ; 110(10): 2189-2210, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35373911

RESUMO

In this research, a novel bioabsorbable suture that is, monofilament and capable of localized drug delivery, was developed from a combination of natural biopolymers that where not previously applied for this purpose. The optimized suture formulation comprised of sodium alginate (6% wt/vol), pectin (0.1% wt/vol), and gelatin (3% wt/vol), in the presence of glycerol (4% vol/vol) which served as a plasticizer. The monofilament bioabsorbable sutures where synthesized via in situ ionic crosslinking in a barium chloride solution (2% wt/vol). The resulting suture was characterized in terms of mechanical properties, morphology, swelling, degradation, drug release, and biocompatibility, in addition to Fourier-transform infrared (FTIR) spectroscopy, Powder X-ray Diffraction (PXRD) and Differential Scanning Calorimetry (DSC) analysis. The drug loaded and non-drug loaded sutures had a maximum breaking strength of 4.18 and 4.08 N, in the straight configuration and 2.44 N and 2.59 N in the knot configuration, respectively. FTIR spectrum of crosslinked sutures depicted Δ9 cm-1 downward shift for the carboxyl stretching band which was indicative of ionic interactions between barium ions and sodium alginate. In vitro analysis revealed continued drug release for 7 days and gradual degradation by means of surface erosion, which was completed by day 28. Biocompatibility studies revealed excellent hemocompatibility and no cytotoxicity. These results suggest that the newly developed bioabsorbable suture meets the basic requirements of a suture material and provides a viable alternative to the synthetic polymer sutures that are currently on the market.


Assuntos
Implantes Absorvíveis , Suturas , Alginatos , Polímeros , Técnicas de Sutura , Resistência à Tração
12.
Pharmaceutics ; 13(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34959394

RESUMO

Insulin is a peptide hormone that is key to regulating physiological glucose levels. Its molecular size and susceptibility to conformational change under physiological pH make it challenging to orally administer insulin in diabetes. The most effective route for insulin delivery remains daily injection. Unfortunately, this results in poor patient compliance and increasing the risk of micro- and macro-vascular complications and thus rising morbidity and mortality rates in diabetics. The use of 3D hydrogels has been used with much interest for various biomedical applications. Hydrogels can mimic the extracellular matrix (ECM) and retain large quantities of water with tunable properties, which renders them suitable for administering a wide range of sensitive therapeutics. Several studies have demonstrated the fixation of insulin within the structural mesh of hydrogels as a bio-scaffold for the controlled delivery of insulin. This review provides a concise incursion into recent developments for the safe and effective controlled delivery of insulin using advanced hydrogel platforms with a special focus on sustained release injectable formulations. Various hydrogel platforms in terms of their methods of synthesis, properties, and unique features such as stimuli responsiveness for the treatment of Type 1 diabetes mellitus are critically appraised. Key criteria for classifying hydrogels are also outlined together with future trends in the field.

13.
Polymers (Basel) ; 13(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34372008

RESUMO

In many clinical applications, the transdermal route is used as an alternative approach to avoid the significant limitations associated with oral drug delivery. There is a long history for drug delivery through the skin utilizing transdermal microneedle arrays. Microneedles are reported to be versatile and very efficient devices. This technique has spurred both industrial and scientific curiosity, due to its outstanding characteristics such as painless penetration, affordability, excellent medicinal efficiency, and relative protection. Microneedles possess outstanding properties for diverse biomedical uses such as the delivery of very large substances with ionic and hydrophilic physicochemical properties. Importantly, microneedles are applicable in numerous biomedical fields such as therapy, diagnosis, and vaccine administration. Microneedles are emerging tools that have shown profound potential for biomedical applications. Transdermal microneedle technologies are likely to become a preferred route of therapeutic substances administration in the future since they are effective, painless, and affordable. In this review, we summarize recent advances in microneedles for therapeutic applications. We explore their constituent materials and fabrication methods that improve the delivery of critical therapeutic substances through the skin. We further discuss the practicality of advanced microneedles used as drug delivery tools.

14.
Polymers (Basel) ; 13(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946703

RESUMO

Nanotechnology has aided in the advancement of drug delivery for the treatment of several neurological disorders including depression. Depression is a relatively common mental disorder which is characterized by a severe imbalance of neurotransmitters. Several current therapeutic regimens against depression display drawbacks which include low bioavailability, delayed therapeutic outcome, undesirable side effects and drug toxicity due to high doses. The blood-brain barrier limits the entry of the drugs into the brain matrix, resulting in low bioavailability and tissue damage due to drug accumulation. Due to their size and physico-chemical properties, nanotechnological drug delivery systems present a promising strategy to enhance the delivery of nanomedicines into the brain matrix, thereby improving bioavailability and limiting toxicity. Furthermore, ligand-complexed nanocarriers can improve drug specificity and antidepressant efficacy and reduce drug toxicity. Biopolymers and nanocarriers can also be employed to enhance controlled drug release and reduce the hepatic first-pass effect, hence reducing the dosing frequency. This manuscript reviews recent advances in different biopolymers, such as polysaccharides and other nanocarriers, for targeted antidepressant drug delivery to the brain. It probes nano-based strategies that can be employed to enhance the therapeutic efficacy of antidepressants through the oral, intranasal, and parenteral routes of administration.

15.
Molecules ; 26(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925886

RESUMO

Tissue engineering is known to encompass multiple aspects of science, medicine and engineering. The development of systems which are able to promote the growth of new cells and tissue components are vital in the treatment of severe tissue injury and damage. This can be done through a variety of different biofabrication strategies including the use of hydrogels, 3D bioprinted scaffolds and nanotechnology. The incorporation of stem cells into these systems and the advantage of this is also discussed. Biopolymers, those which have a natural original, have been particularly advantageous in tissue engineering systems as they are often found within the extracellular matrix of the human body. The utilization of biopolymers has become increasing popular as they are biocompatible, biodegradable and do not illicit an immune response when placed into the body. Tissue engineering systems for use with the eye are also discussed. This is of particular interest as the eye is known as an immune privileged site resulting in an extremely limited ability for natural cell regeneration.


Assuntos
Medicina Regenerativa , Engenharia Tecidual , Materiais Biocompatíveis , Biopolímeros , Bioimpressão , Biotecnologia , Humanos , Hidrogéis , Nanomedicina/métodos , Impressão Tridimensional , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais
16.
Expert Opin Ther Pat ; 31(9): 851-865, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33832392

RESUMO

INTRODUCTION: : Among all the anti-schistosomal drugs, praziquantel has been the most widely used. However, some major challenges have been faced using the drug in the treatment of schistosome infections. AREAS COVERED: : Several approaches used in the synthesis of praziquantel aimed at reducing the time and cost of production, the toxicity and experimental harsh conditions are discussed. Also, patented methods involved in the pharmaceutical reformulation of praziquantel in the treatment of diverse endoparasitic infestations are reported. Additionally, future perspectives in terms of nanomedicine approach in the formulation of praziquantel are highlighted. EXPERT OPINION: : Lipid-based nanosystems (LBNSs) formulations can be used to overcome the shortcomings associated with the use of praziquantel in the schistosomiasis treatment due to their amphipathic nature. This could be a promising vehicle for the delivery of praziquantel, which could in turn improve the bioavailability, as well as reduce the frequent dose of the drug and improve patient compliance. This may sustain the release of the drug and improve the rapid conversion of the drug into inactive metabolite due to rapid metabolism. Additionally, LBNSs approach could increase and improve the lipophilicity of the drug, which could make it easier to interact with the hydrophobic cores of the worm tegument.


Assuntos
Anti-Helmínticos/administração & dosagem , Praziquantel/administração & dosagem , Esquistossomose/tratamento farmacológico , Animais , Anti-Helmínticos/farmacocinética , Anti-Helmínticos/farmacologia , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Humanos , Lipídeos/química , Adesão à Medicação , Nanoestruturas , Patentes como Assunto , Praziquantel/farmacocinética , Praziquantel/farmacologia , Esquistossomose/parasitologia
17.
Carbohydr Polym ; 261: 117860, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766349

RESUMO

Suture materials constitute one of the largest biomedical material groups with a huge global market of $ 1.3 billion annually and employment in over 12 million procedures per year. Suture materials have radically evolved over the years, from basic strips of linen to more advanced synthetic polymer sutures. Yet, the journey to the ideal suture material is far from over and we now stand on the brink of a new era of improved suture materials with greater safety and efficacy. This next step in the evolutionary timeline of suture materials, involves the use of natural, carbohydrate polymers that have, until recent years, never before been considered for suture material applications. This review exposes the latest and most important advancements in suture material development while digging deep into how natural, carbohydrate polymers can serve to advance this field.

18.
Drug Deliv Transl Res ; 11(1): 24-48, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32323161

RESUMO

Recent research has been successful in demonstrating the importance of the addition of platelets to the field of cell-mediated therapeutics, by making use of different platelet forms to design modalities able to positively impact a wide range of diseases. A key obstacle hindering the success of conventional therapeutic interventions is their inability to produce targeted treatment, resulting in a number of systemic side effects and a longer duration for the onset of action to occur. An additional challenge facing current popular therapeutic interventions is biocompatibility of the system, resulting in the decline of patient compliance to treatment. In an attempt to address these challenges, the past few decades have been witness to the discovery and innovation of precision therapy, in order to achieve targeted treatment for an array of conditions, thereby superseding alternative mechanisms of treatment. Platelet-mediated therapeutics, as well as employing platelets as drug delivery vehicles, are key components in advancing precision therapy within research and in clinical settings. This novel approach is designed with the objective that the platelets retain their original structure and functions within the body, thereby mitigating biocompatibility challenges. In this article, we review the current significant impact that the addition of platelet-inspired systems has made on the field of therapeutics; explore certain limitations of each system, together with ideas on how to overcome them; and discuss the clinical implications and future potential of platelet-inspired therapeutics. Graphical abstract.


Assuntos
Plaquetas , Humanos
19.
Polymers (Basel) ; 12(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825546

RESUMO

Poor circulation stability and inadequate cell membrane penetration are significant impediments in the implementation of nanocarriers as delivery systems for therapeutic agents with low bioavailability. This research discusses the fabrication of a biocompatible poly(lactide-co-glycolide) (PLGA) based nanocarrier with cationic and hydrophilic surface properties provided by natural polymer chitosan and coating polymer polyethylene glycol (PEG) for the entrapment of the hydrophobic drug disulfiram. The traditional emulsification solvent evaporation method was compared to a microfluidics-based method of fabrication, with the optimisation of the parameters for each method, and the PEGylation densities on the experimental nanoparticle formulations were varied. The size and surface properties of the intermediates and products were characterised and compared by dynamic light scattering, scanning electron microscopy and X-ray diffraction, while the thermal properties were investigated using thermogravimetric analysis and differential scanning calorimetry. Results showed optimal particle properties with an intermediate PEG density and a positive surface charge for greater biocompatibility, with nanoparticle surface characteristics shielding physical interaction of the entrapped drug with the exterior. The formulations prepared using the microfluidic method displayed superior surface charge, entrapment and drug release properties. The final system shows potential as a component of a biocompatible nanocarrier for poorly soluble drugs.

20.
Curr Pharm Des ; 26(19): 2207-2221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32238132

RESUMO

Carbon nanodots are zero-dimensional spherical allotropes of carbon and are less than 10nm in size (ranging from 2-8nm). Based on their biocompatibility, remarkable water solubility, eco- friendliness, conductivity, desirable optical properties and low toxicity, carbon dots have revolutionized the biomedical field. In addition, they have intrinsic photo-luminesce to facilitate bio-imaging, bio-sensing and theranostics. Carbon dots are also ideal for targeted drug delivery. Through functionalization of their surfaces for attachment of receptor-specific ligands, they ultimately result in improved drug efficacy and a decrease in side-effects. This feature may be ideal for effective chemo-, gene- and antibiotic-therapy. Carbon dots also comply with green chemistry principles with regard to their safe, rapid and eco-friendly synthesis. Carbon dots thus, have significantly enhanced drug delivery and exhibit much promise for future biomedical applications. The purpose of this review is to elucidate the various applications of carbon dots in biomedical fields. In doing so, this review highlights the synthesis, surface functionalization and applicability of biodegradable polymers for the synthesis of carbon dots. It further highlights a myriad of biodegradable, biocompatible and cost-effective polymers that can be utilized for the fabrication of carbon dots. The limitations of these polymers are illustrated as well. Additionally, this review discusses the application of carbon dots in theranostics, chemo-sensing and targeted drug delivery systems. This review also serves to discuss the various properties of carbon dots which allow chemotherapy and gene therapy to be safer and more target-specific, resulting in the reduction of side effects experienced by patients and also the overall increase in patient compliance and quality of life.


Assuntos
Carbono , Pontos Quânticos , Diagnóstico por Imagem , Sistemas de Liberação de Medicamentos , Terapia Genética , Humanos , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA