Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(15): 153001, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095629

RESUMO

Optical trapping of molecules with long coherence times is crucial for many protocols in quantum information and metrology. However, the factors that limit the lifetimes of the trapped molecules remain elusive and require improved understanding of the underlying molecular structure. Here we show that measurements of vibronic line strengths in weakly and deeply bound ^{88}Sr_{2} molecules, combined with ab initio calculations, allow for unambiguous identification of vibrational quantum numbers. This, in turn, enables the construction of refined excited potential energy curves, informing the selection of magic wavelengths that facilitate long vibrational coherence. We demonstrate Rabi oscillations between far-separated vibrational states that persist for nearly 100 ms.

2.
Phys Rev Lett ; 121(14): 143401, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339457

RESUMO

Processes that break molecular bonds are typically observed with molecules occupying a mixture of quantum states and successfully described with quasiclassical models, while a few studies have explored the distinctly quantum mechanical low-energy regime. Here, we use photodissociation of diatomic strontium molecules to demonstrate the crossover from the ultracold, quantum regime where photofragment angular distributions strongly depend on the kinetic energy to the quasiclassical regime. Using time-of-flight imaging for photodissociation channels with millikelvin reaction barriers, we explore photofragment energies in the 0.1-300 mK range experimentally and up to 3 K theoretically, and discuss the energy scale at which the crossover occurs. We find that the effects of quantum statistics can persist to high photodissociation energies.

3.
Phys Rev Lett ; 120(3): 033201, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400515

RESUMO

Photodissociation of a molecule produces a spatial distribution of photofragments determined by the molecular structure and the characteristics of the dissociating light. Performing this basic reaction at ultracold temperatures allows its quantum mechanical features to dominate. In this regime, weak applied fields can be used to control the reaction. Here, we photodissociate ultracold diatomic strontium in magnetic fields below 10 G and observe striking changes in photofragment angular distributions. The observations are in excellent agreement with a multichannel quantum chemistry model that includes nonadiabatic effects and predicts strong mixing of partial waves in the photofragment energy continuum. The experiment is enabled by precise quantum-state control of the molecules.

4.
Phys Rev Lett ; 114(8): 083002, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25768762

RESUMO

We observe the emergence of a disorder-induced insulating state in a strongly interacting atomic Fermi gas trapped in an optical lattice. This closed quantum system, free of a thermal reservoir, realizes the disordered Fermi-Hubbard model, which is a minimal model for strongly correlated electronic solids. We observe disorder-induced localization of a metallic state through measurements of mass transport. By varying the lattice potential depth, we detect interaction-driven delocalization of the disordered insulating state. We also measure localization that persists as the temperature of the gas is raised. These behaviors are consistent with many-body localization, which is a novel paradigm for understanding localization in interacting quantum systems at nonzero temperature.

5.
Phys Rev Lett ; 113(9): 099602, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25216016
6.
Phys Rev Lett ; 111(14): 145303, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24138250

RESUMO

We report on the impact of variable-scale disorder on 3D Anderson localization of a noninteracting ultracold atomic gas. A spin-polarized gas of fermionic atoms is localized by allowing it to expand in an optical speckle potential. Using a sudden quench of the localized density distribution, we verify that the density profile is representative of the underlying single-particle localized states. The geometric mean of the disordering potential correlation lengths is varied by a factor of 4 via adjusting the aperture of the speckle focusing lens. We observe that the root-mean-square size of the localized gas increases approximately linearly with the speckle correlation length, in qualitative agreement with the scaling predicted by weak scattering theory.

7.
Science ; 334(6052): 66-8, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21980104

RESUMO

Anderson localization (AL) is a ubiquitous interference phenomenon in which waves fail to propagate in a disordered medium. We observe three-dimensional AL of noninteracting ultracold matter by allowing a spin-polarized atomic Fermi gas to expand into a disordered potential. A two-component density distribution emerges consisting of an expanding mobile component and a nondiffusing localized component. We extract a mobility edge that increases with the disorder strength, whereas the thermally averaged localization length is shown to decrease with disorder strength and increase with particle energy. These measurements provide a benchmark for more sophisticated theories of AL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA