Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Neurol ; 14: 1243453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915379

RESUMO

Background: Despite continuous advances in microsurgical and endovascular techniques, the treatment of complex aneurysms remains challenging. Aneurysms that are dilemmatic for conventional clipping or endovascular coiling often require bypass as part of a strategy to reduce the risk of ischemic complications. In anatomically favorable sites, the intracranial-intracranial in situ bypass may be an appealing choice. This article details the surgical strategies, operative nuances, and clinical outcomes of this technique with a consecutive series in our department. Methods: A retrospective review of a prospectively maintained neurosurgical patient database was performed to identify all patients treated with side-to-side in situ bypass from January 2016 to June 2022. In total, 12 consecutive patients, including 12 aneurysms, were identified and included in the series. The medical records, surgical videos, neuroimaging studies, and follow-up clinic notes were reviewed for every patient. Results: Of the 12 aneurysms, there were 5 middle cerebral artery aneurysms, 4 anterior cerebral artery aneurysms, and 3 posterior inferior cerebellar artery aneurysms. The morphology of the aneurysms was fusiform in 8 patients and saccular in the remaining 4 patients. There were 3 patients presented with subarachnoid hemorrhage. The treatment modality was simple in situ bypass in 8 cases and in situ bypass combined with other modalities in 4 cases. Bypass patency was confirmed in all cases by intraoperative micro-doppler probe and (or) infrared indocyanine green (ICG) video angiography intraoperatively and with digital subtraction angiography (DSA) or computed tomography angiography (CTA) postoperatively. None of the patients developed a clinically manifested stroke due to the procedure though a callosomarginal artery was intentionally removed in one patient. The median follow-up period was 16.2 months (6-36). All patients had achieved improved or unchanged modified Rankin scale scores at the final follow-ups. Conclusion: Cerebral revascularization technique remains an essential skill for the treatment of complex aneurysms. The in situ bypass is one of the most effective techniques to revascularize efferent territory when vital artery sacrifice or occlusion is unavoidable. The configuration of in situ bypass should be carefully tailored to each case, with consideration of variations in anatomy and pathology of the complex aneurysms.

2.
Sci Rep ; 13(1): 5748, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029174

RESUMO

The aim is to use Crispr-Cas12a for the rapid detection of the single nucleotide polymorphism (SNP) of isocitrate dehydrogenase 1 (IDH1)-R132H locus and explore the effectiveness and consistency of this method with direct sequencing method for detecting IDH1-R132H of glioma tissue samples. 58 previous frozen tissue and 46 recent fresh tissue samples of adult diffuse glioma were selected to detect IDH1-R132H using Crispr-Cas12a. The results of immunohistochemistry (IHC) and direct sequencing methods were analyzed. We calculated the efficiency index of Crispr-Cas12a and IHC, and analyzed the consistency among Crispr-Cas12a, IHC and direct sequencing method using paired Chi-sequare test and Kappa identity test. We accomplished the rapid detection of IDH1-R132H in 60 min using Crispr-Cas12a. Regarding direct sequencing method as the gold standard, the sensitivity, specificity and consistency rate of Crispr-Cas12a was 91.4%, 95.7% and 93.1% in the frozen sample group, while 96.1%, 89.7% and 92.0% in the fresh sample group, respectively. Kappa test showed good consistency between the two methods (k = 0.858). Crispr-Cas12a can quickly and accurately detect IDH1-R132H and has good stability. It is a promising method to detect IDH1 mutation status intraoperatively.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico , Sistemas CRISPR-Cas/genética , Glioma/diagnóstico , Glioma/genética , Mutação
3.
Front Neurosci ; 17: 1131063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937685

RESUMO

Objective: The purpose of this study was to study mechanisms of VNS modulation from a single neuron perspective utilizing a practical observation platform with single neuron resolution and widefield, real-time imaging coupled with an animal model simultaneously exposing the cerebral cortex and the hippocampus. Methods: We utilized the observation platform characterized of widefield of view, real-time imaging, and high spatiotemporal resolution to obtain the neuronal activities in the cerebral cortex and the hippocampus during VNS in awake states and under anesthesia. Results: Some neurons in the hippocampus were tightly related to VNS modulation, and varied types of neurons showed distinct responses to VNS modulation. Conclusion: We utilized such an observation platform coupled with a novel animal model to obtain more information on neuron activities in the cerebral cortex and the hippocampus, providing an effective method to further study the mechanisms of therapeutic effects modulated by VNS.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36767103

RESUMO

Although the ecological risks of antibiotics have been extensively researched globally, fewer studies have been conducted in sensitive and fragile plateau wetland ecosystems. To evaluate the ecological risk of antibiotics in plateau urban wetlands, 18 water samples, 10 plant samples, and 8 sediment samples were collected in March 2022 in the Xining urban wetlands on the Qinghai-Tibet Plateau. The liquid chromatography-electrospray ionization tandem mass spectrometry method was utilized to measure the concentrations of 15 antibiotics in three categories in three types of environmental media. Risk quotients were adopted to assess the ecological risk of antibiotics, and the principal component analysis-multiple linear regression model was used to analyze the source of antibiotics. The results showed that (1) the maximum concentrations of antibiotics in water samples, plants, and sediments reached 1220.86 ng/L, 78.30 ng/g, and 5.64 ng/g, respectively; (2) Tylosin (TYL), norfloxacin (NFX), ofloxacin (OFX), and ciprofloxacin (CFX) in water were at medium and high-risk levels, and OFX had the highest risk value, of 108.04; and (3) the results of source apportionment indicate that 58.94% of the antibiotics came from the Huangshui river and wastewater treatment plant (WWTP) near the wetlands. The current study may provide a reference for the risks and management of antibiotics in plateau urban wetlands.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , Tibet , Áreas Alagadas , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Medição de Risco , China , Ofloxacino , Água/análise
5.
Aging Dis ; 14(1): 219-228, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36818558

RESUMO

Unhindered transportation of substances in the brain extracellular space (ECS) is essential for maintaining brain function. Regulation of transportation is a novel strategy for treating ECS blockage-related brain diseases, but few techniques have been developed to date. In this study, we established a novel approach for accelerating the drainage of brain interstitial fluid (ISF) in the ECS using minimally invasive surgery, in which a branch of the external carotid artery is separated and implanted epidurally (i.e., epidural arterial implantation [EAI]) to promote a pulsation effect on cerebrospinal fluid (CSF) in the frontoparietal region. Tracer-based magnetic resonance imaging was used to evaluate the changes in ISF drainage in rats 7 and 15 days post-EAI. The drainage of the traced ISF from the caudate nucleus to ipsilateral cortex was significantly accelerated by EAI. Significant increases in the volume fraction of the ECS and molecular diffusion rate were demonstrated using the DECS-mapping technique, which may account for the mechanisms underlying the changes in brain ISF. This study provides a novel perspective for encephalopathy treatment via the brain ECS.

6.
World Neurosurg ; 168: e562-e569, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244665

RESUMO

BACKGROUND: The use of Fourier transform infrared spectroscopy to identify the peritumoral tissue of gliomas proves the potential of this technique to distinguish normal brain tissues from glioma tissues. However, due to the heterogeneity of gliomas, it is difficult to characterize the representative spectra of normal brain tissues and glioma tissues. The linear spectra of major cellular components, such as microglia, astrocytes, and glioma cells, were obtained to quantify the biochemical changes between healthy cells and tumor cells, and provide supporting data for the final distinction between tumor and normal brain tissue. METHODS: Fourier transform infrared was used to measure human astrocytes, microglia (HM1900), and glioma cells (U87, BT325), and the cellular components of the 4 types of cells were analyzed by means of average spectra, second-derivative spectra, principal component analysis, hierarchical cluster analysis, and difference spectra. RESULTS: The proteomics, lipidomics, genomics, and metabolic statuses of the cells were different. The amide I, lipid, and nuclear acid regions of the spectra are the most obvious regions to use for distinguishing the 4 types of cells. CONCLUSIONS: We conclude that an improved understanding of both similarities and differences in the cellular components of astrocytes, microglia, and glioma cells can help us better understand the heterogeneity of gliomas. We suggest that targeting cellular metabolism (protein, lipid, and nuclear acids) is helpful to distinguish between normal brain tissue and glioma tissue, which has broad application prospects.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Neoplasias Encefálicas/patologia , Glioma/patologia , Astrócitos/metabolismo , Lipídeos/análise
7.
J Biophotonics ; 15(4): e202100313, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34931464

RESUMO

This study proposes a convolutional neural network (CNN)-based computer-aided diagnosis (CAD) system for the grade classification of human glioma by using mid-infrared (MIR) spectroscopic mappings. Through data augmentation of pixels recombination, the mappings in the training set increased almost 161 times relative to the original mappings. The pixels of the recombined mappings in the training set came from all of the one-dimensional (1D) vibrational spectroscopy of 62 (almost 80% of all 77 patients) patients at specific bands. Compared with the performance of the CNN-CAD system based on the 1D vibrational spectroscopy, we found that the mean diagnostic accuracy of the recombined MIR spectroscopic mappings at peaks of 2917 cm-1 , 1539 cm-1 and 1234 cm-1 on the test set performed higher and the model also had more stable patterns. This research demonstrates that two-dimensional MIR mapping at a single frequency can be used by the CNN-CAD system for diagnosis and the research also gives a prompt that the mapping collection process can be replaced by a single-frequency IR imaging system, which is cheaper and more portable than a Fourier transform infrared microscopy and thus may be widely utilized in hospitals to provide meaningful assistance for pathologists in clinics.


Assuntos
Glioma , Redes Neurais de Computação , Diagnóstico por Computador/métodos , Análise de Fourier , Glioma/diagnóstico por imagem , Humanos , Microscopia
8.
Brain Behav ; 11(7): e02143, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34102010

RESUMO

BACKGROUND: Isorhapontigenin (ISO) has been shown to have antioxidant activity. This study aimed to investigate the antioxidant effects of ISO on cerebral ischemia/reperfusion (I/R) injury and its possible molecular mechanisms. METHODS: Focal cerebral ischemia-reperfusion injury (MCAO/R) model and primary cortical neurons were established an oxygen-glucose deprivation (OGD / R) injury model. After 24 hr of reperfusion, the neurological deficits of the rats were analyzed and HE staining was performed, and the infarct volume was calculated by TTC staining. In addition, the reactive oxygen species (ROS) in rat brain tissue, the content of 4-Hydroxynonenal (4-HNE), and 8-hydroxy2deoxyguanosine (8-OHdG) were detected. Neuronal cell viability was determined by MTT assay. Western blot analysis was determined for protein expression. RESULTS: ISO treatment significantly improved neurological scores, reduced infarct volume, necrotic neurons, ROS production, 4-HNE, and 8-OHdG levels. At the same time, ISO significantly increased the expression of Nrf2 and HO-1. The neuroprotective effects of ISO can be eliminated by knocking down Nrf2 and HO-1. In addition, knockdown of the PKCε blocked ISO-induced nuclear Nfr2, HO-1 expression. CONCLUSION: ISO protected against oxidative damage induced by brain I/R, and its neuroprotective mechanism may be related to the PKCε/Nrf2/HO-1 pathway.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Isquemia Encefálica/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais , Estilbenos
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 260: 119946, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34049006

RESUMO

The World Health Organization (WHO) grade diagnosis of cancer is essential for surgical outcomes and patient treatment. Traditional pathological grading diagnosis depends on dyes or other histological approaches, and the result interpretation highly relies on the pathologists, making the process time-consuming (>60 min, including the steps of dewaxing to water and H&E staining), resource-wasting, and labor-intensive. In the present study, we report an alternative workflow that combines the Fourier transform infrared (FTIR) microscopy and artificial neural network (ANN) to diagnose the grade of human glioma in a way that is faster (~20 min, including the processes of sample dewaxing, spectra acquisition and analysis), accurate (the prediction accuracy, specificity and sensitivity can reach above 99%), and without reagent. Moreover, this method is much superior to the common classification method of principal component analysis-linear discriminate analysis (PCA-LDA) (the prediction accuracy, specificity and sensitivity are only 87%, 89% and 86%, respectively). The ANN mainly learned the characteristic region of 800-1800 cm-1 to classify the major histopathologic classes of human glioma. These results demonstrate that the grade diagnosis of human glioma by FTIR microscopy plus ANN can be streamlined, and could serve as a complementary pathway that is independent of the traditional pathology laboratory.


Assuntos
Glioma , Microscopia , Análise de Fourier , Glioma/diagnóstico , Humanos , Redes Neurais de Computação , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Med Sci Monit ; 26: e925754, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33077704

RESUMO

BACKGROUND With infiltration, high-grade glioma easily causes the boundary between tumor tissue and adjacent tissue to become unclear and results in tumor recurrence at or near the resection margin according to the incomplete surgical resection. Fourier transform infrared spectroscopy (FTIR) technique has been demonstrated to be a useful tool that yields a molecular fingerprint and provides rapid, nondestructive, high-throughput and clinically relevant diagnostic information. MATERIAL AND METHODS FTIR was used to investigate the morphological and biochemical properties of human astrocytes (HA), microglia (HM1900), glioma cells (U87), and glioblastoma cells (BT325) cultured in vitro to simulate the infiltration area, with the use of multi-peak fitting and principal component analysis (PCA) of amide I of FTIR spectra and the use of hierarchical cluster analysis (HCA). RESULTS We found that the secondary structures of the 4 types of cells were significantly different. The contents of a-helix structure in glial cells was significantly higher than in the glioma cells, but the levels of ß-sheet, ß-turn, and random coil structures were lower. The 4 types of cells could be clearly separated with 85% for PC1 and 12.2% for PC2. CONCLUSIONS FTIR can be used to distinguish between human astrocytes, microglia, glioma, and glioblastoma cells in vitro. The protein secondary structure can be used as an indicator to distinguish tumor cells from glial cells. Further tissue-based and in vivo studies are needed to determine whether FTIR can identify cerebral glioma.


Assuntos
Astrócitos/ultraestrutura , Glioblastoma/ultraestrutura , Microglia/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Astrócitos/citologia , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Microglia/citologia
11.
Med Sci Monit ; 23: 3054-3063, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28640793

RESUMO

BACKGROUND Giant carotid intracavernous aneurysm refers to those lesions larger than 2.5 cm and derived from a cavernous segment, accounting for about 30% of all intracranial tumors. Dynamic CT perfusion imaging (PCT) is a common method recently employed to evaluate cerebral perfusion. This study investigated the efficacy and clinical application of intraoperative CT in the surgery for giant symptomatic carotid intracavernous aneurysm. MATERIAL AND METHODS A retrospective analysis was performed on 23 cases with giant symptomatic carotid intracavernous aneurysm. BTO testing was performed before surgery. Differential treatments were performed based on the condition of aneurysm, and some patients received intraoperative PCT. Postoperative anti-coagulation was given with DSA or CTA follow-up examinations at 3-6 months, 1 year, and 2 years after surgery. RESULTS A total of 17 patients received aneurysm isolation coupled with high-flow bypass surgery. Among those, 9 developed early-onset neurological function after surgery, with gradual recover within 6 months. One coma patient died 25 months after discharge. One patient had aneurysm isolation with clapping of anterior communicating artery, and the other 5 cases received artery clapping only. In those patients, 4 had improvement at early phase, while 1 patient had numbness of the oculomotor nerve. Six patients received surgery in the CT room, including 5 cases with single proximal ligation of the internal carotid artery plus 1 aneurysm isolation combined with high-flow bypass surgery. CONCLUSIONS Intraoperative PCT can provide objective evidence and effective evaluation of cerebral perfusion.


Assuntos
Artéria Carótida Interna/diagnóstico por imagem , Artéria Carótida Interna/cirurgia , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Cuidados Intraoperatórios , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA