Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Ethnopharmacol ; 324: 117691, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38176667

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is widely used in the treatment of ulcerative colitis (UC) and has good antioxidant and anti-inflammatory effects, but its specific active ingredients and mechanisms of action are still unknown. THE PURPOSE OF THE STUDY: To elucidate the specific molecular mechanisms of licorice in the treatment of UC and to experimentally verify its activity. METHODS: Through network pharmacology, the active ingredients of licorice and the molecular targets of UC were identified. A traditional Chinese medicine (TCM)-components-target-disease network diagram was established, and the binding energies of the active ingredient and targets of licorice were verified by molecular docking. A BALB/c mice model of UC was established by treatment with 3% dextran sulfate sodium (DSS). The effect of licorice on colon tissue injury was histologically assessed. The expression of IL-6 and IL-17 in colon tissue was detected by immunohistochemistry (IHC). Transmission electron microscopy (TEM) was used to observe morphological changes in mitochondria in the colon. Caco2 cells were treated with lipopolysaccharide (LPS) for 24 h to establish the cell inflammatory damage model, and cells were exposed to different concentrations of drug-containing serum of Licorice (DCSL) for 24 h. In cells treated with the drug, the contents of oxidation markers were measured and ELISA was used to determine the levels of inflammatory factors in the cells. TEM was used to observe morphological changes in mitochondria. ZO-1 and occludin were detected by Western blotting. DCSL effects on autophagy were evaluated by treating cells with DCSL and autophagy inhibitor for 24 h after LPS injection. Small interfering ribonucleic acid (si-RNA) was used to silence Nrf2 gene expression in Caco2 cells to observe the effects of DCSL on autophagy through the Nrf2/PINK1 pathway. Nrf2, PINK1, HO-1, Parkin, P62, and LC3 were detected by Western blotting. RESULTS: Ninety-one active ingredients and 339 action targets and 792 UC disease targets were identified, 99 of which were overlapping targets. Molecular docking was used to analyze the binding energies of liquiritin, liquiritigenin, glycyrrhizic acid, and glycyrrhetinic acid to the targets, with glycyrrhetinic acid having the strongest binding energy. In the UC mouse model, licorice improved colon histopathological changes, reduced levels of IL-6 and IL-17 and repaired mitochondrial damage. In the LPS-induced inflammation model of Caco2 cells, DCSL decreased MDA, IL-1ß, Il-6, and TNF-α levels and increased those of Superoxide Dismutase (SOD), glutathione peroxidase (GSH-PX), and IL-10, and improved the morphological changes of mitochondria. Increased expression of Nrf2, PINK1, Parkin, HO-1, ZO-1, occludin, P62, and LC3 promoted autophagy and reduced inflammation levels. CONCLUSION: Licorice improves UC, which may be related to the activation of the Nrf2/PINK1 signaling pathway that regulates autophagy.


Assuntos
Colite Ulcerativa , Colite , Ácido Glicirretínico , Glycyrrhiza , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Interleucina-17/metabolismo , Colo , Farmacologia em Rede , Células CACO-2 , Lipopolissacarídeos/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Ocludina/metabolismo , Inflamação/patologia , Ácido Glicirretínico/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colite/tratamento farmacológico
2.
J Agric Food Chem ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917564

RESUMO

Spodoptera frugiperda is a highly destructive migratory pest that threatens various crops globally. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an effective biocontrol agent against lepidopteran pests. Here, we explored the molecular mechanisms underlying the immune response to AcMNPV infection in S. frugiperda. RNA-seq and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses identified the Toll, IMD, and apoptosis pathways as primary immune responses. Investigation into AcMNPV-induced apoptosis in the S. frugiperda cell line (Sf9) revealed that the Toll pathway activated the JNK via the TRAF6 (TNF receptor-associated factor 6) adapter. In addition, AcMNPV-induced the differential expression of several host-encoded microRNAs (miRNAs), with significant negative regulatory effects, on S. frugiperda antiviral immune genes. RNAi and miRNA-mimic mediated silencing of these genes resulted in increased AcMNPV proliferation. Our findings reinforce the potential of AcMNPV as a potent biocontrol agent and further our understanding of developing biotechnology-based targeted pest control agents.

3.
Immun Inflamm Dis ; 11(1): e757, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36705402

RESUMO

PURPOSE: Study of the effects and mechanisms of licorice in the treatment of ulcerative colitis (UC) from the perspective of mitochondrial autophagy. METHODS: BALB/C mice were induced with 3% dextran sodium sulfate to build an animal model of UC. After 7 days of modeling, different doses of licorice were administered for 7 days. Hematoxylin and eosin staining is used to detect pathological changes in the colon. Mitochondrial membrane potentials and reactive oxygen species (ROS) contents were detected by flow cytometry, and autophagy of mitochondria was observed by transmission electron microscopy. Determination of inflammatory cytokines by enzyme-linked immunosorbent assay. The oxidizing factors are detected by the kits. Western blot analysis was used to detect expressions for nuclear factor called erythropoietin (Nrf2), pten-induced protein kinase 1 (PINK1), Parkin, HO-1, P62, and LC3. RESULTS: Licorice improved the pathological condition of UC mice, increasing the mitochondrial membrane potential and decreasing the ROS content. Promotes the emergence of autophagosomes and autophagosomes. The contents of interleukin (IL)-1ß, IL-6, IL-17, and tumor necrosis factor-alpha were downregulated, the contents of superoxide dismutase and glutathione peroxidase were upregulated and the contents of malondialdehyde were downregulated. In addition, licorice promotes the expression of Nrf2, PINK1, Parkin, HO-1, P62, and LC3. CONCLUSION: Licorice was shown to reduce levels of inflammatory factors and oxidative stress in mice with UC, possibly by promoting mitochondrial autophagy through the activation of the Nrf2/PINK1 pathway.


Assuntos
Colite Ulcerativa , Glycyrrhiza , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases , Glycyrrhiza/metabolismo , Camundongos Endogâmicos BALB C , Autofagia , Mitocôndrias , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/farmacologia
4.
Biology (Basel) ; 11(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36358303

RESUMO

The fall armyworm (Spodoptera frugiperda, J.E. Smith) is one of the most important agricultural pests in the world and causes serious damage to many significant crops. Insect gut microbiota plays a vital role in host immunity, digestion, and development, helping the higher organism colonize in a new environment. However, the effects of different diets on midgut microbial composition and host immunity in S. frugiperda remain unclear. So far, no reports have compared the gut microbiota of fall armyworm reared using an artificial diet compared to corn leaf in Guangzhou, China. High-throughput 16S rRNA sequencing technology was applied to gain insight into the composition of the gut microbiota of S. frugiperda feeding on corn leaf (field diet) and on a starch-rich artificial diet (lab diet). The fall armyworm gut microbiota was dominated by the bacterial phyla Firmicutes and Proteobacteria. Despite the difference in diet, the core bacterial community was represented by the genus Enterococcus. However, the bacterial community is dominated by a few phylotypes, namely operational taxonomical units 1 (OTU1) (Enterococcus casseliflavus), OTU3 (Enterobacteriaceae), OTU2 (Weissella), and OTU4 (Clostridium), accounting for 97.43% of the total OTUs in the complete dataset. A significant difference was identified in the bacterial communities between the "lab diet" and the "field diet" groups. OTU1 and OTU2 were significantly higher in the "field diet" group, whereas OTU3 and OTU4 were higher in the "lab diet" group. A phylogenetic investigation of the communities by reconstruction of unobserved states (PICRUSt) predicted functional analysis indicates the presence of several genes associated with plant biomass degradation. Importantly, antibiotic-mediated perturbation of the midgut microbial community significantly impacts the expression profile of the important immune genes of the host. Furthermore, the oral reintroduction of gut bacterial isolates (E. mundtii and E. gallinarum) significantly enhances host resistance to AcMNPV infection. Taken together, our results indicate that diet composition is an important driver in shaping insect gut microbiome and immune gene expression, ultimately playing an important role in the pest defense system.

5.
J Ethnopharmacol ; 298: 115640, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030029

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is widely used in traditional Chinese Medicine (TCM) for compound compatibility, which could reduce toxicity and increase efficacy of certain herbal medicine, and its active components prominently effects of inhibit of inflammation and regulate of immunity. AIM OF THE STUDY: The study probed into the mechanism of the anti-inflammatory and immunomodulatory effects of licorice based on the domination of the T helper type 17/regulatory T cells (Th17/Treg) differentiation balance and the composition and structure of the intestinal flora through the nuclear factor kappa B (NF-κB) signaling pathway. MATERIALS AND METHODS: BALB/c mice were inoculated with dextran sulfate sodium (DSS) to establish animal models of ulcerative colitis (UC). For the pharmacodynamic study, UC mice were observed for the anti-inflammatory effect of licorice water extraction (LWE) in vivo, including clinical observation and measurement of colon length. Hematoxylin-eosin (HE) staining was used to evaluate pathological conditions. Immunohistochemistry (IHC) and transmission electron microscopy (TEM) were performed to observe the intestinal barrier of the colons. Inflammatory cytokine levels were measured using with enzyme-linked immunosorbent assay (ELISA) kits. The proportions of T helper (Th) cells in the colons was assessed using flow cytometry. Gut microbiota diversity was detected using 16S ribosomal (r)DNA sequencing. In addition, Western blot (WB) assays were used to verify ROR-γt, Foxp3, TLR4, MyD88 and NF-κB expression according to a standard protocol. RESULTS: LWE exerted a pharmacological anti-inflammatory effect by attenuating inflammation in the colonic tissues through affecting the protein expression of TLR4/MyD88/NF-κB, and increasing the expression of tight junction (TJ) protein in the colons, improving the integrity of the intestinal mucosal barrier in vivo. Moreover, LWE reversed the imbalance in Th17/Treg cells differentiation and influenced the protein expression of ROR-γt and Foxp3 in UC mouse colons. In particular, LWE significantly affected the diversity of the gut microbiota in UC mice, ameliorated the composition of dominant species, and significantly increased the type and quantity of probiotics. CONCLUSION: Licorice tends to reduce inflammation and enhance the protective action of the intestinal mucosal barrier via the TLR4/MyD88/NF-κB signal transduction pathway and alter the imbalance of Th-cell differentiation. Notably, licorice may affect the diversity of intestinal microbiota and the content of beneficial bacteria in the colon, which is a potential mechanism for understanding anti-inflammatory and immunomodulatory effects in UC mice in vivo.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Glycyrrhiza uralensis , Animais , Anti-Inflamatórios , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/tratamento farmacológico , Colo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
6.
Int J Biol Macromol ; 142: 114-124, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593730

RESUMO

Peptidoglycan recognition proteins (PGRPs) are family of pattern recognition receptors (PRRs) and triggers the innate immune system (IIS) against the microbial infection. Although PGRPs have been intensively studied in model insects, they remain uncharacterized in most of the non-model insects. Here, we cloned and characterized a full-length cDNA of PGRP, from P. xylostella (PxPGRP-S1), which encodes a protein of 239 amino acids with PGRP domain, Ami2 domain and transmembrane region. The phylogenetic analysis revealed that the PxPGRP-S1 was closely related to the unigene of Plutella xylostella. Quantitative real-time PCR and immunohistochemistry revealed that PxPGRP-S1 is mainly expressed in the fat body of the healthy larva. The expression of PxPGRP-S1 was significantly upregulated in the midgut at 24 h postinfection by Bacillus thuringiensis. Silencing of the PxPGRP-S1 expression by RNAi, significantly decrease the expression of the antimicrobial peptides (AMPs) in the 4th instar larvae of P. xylostella. Similarly injection of an anti-PxPGRP-S1 serum caused the low expression of the AMPs in P. xylostella. Additionally, PxPGRP-S1 depleted P. xylostella by oral administration of bacterial expressed dsRNA decreased the resistance against B. thuringiensis challenge, leads to high mortality. Together, our result indicates that PxPGRP-S1, served as a bacterial pattern recognition receptor (PRR) and triggers the expression of AMPs in P. xylostella.


Assuntos
Antibacterianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Mariposas/genética , Mariposas/metabolismo , Sequência de Aminoácidos , Animais , Bacillus thuringiensis , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Clonagem Molecular , Escherichia coli/genética , Regulação da Expressão Gênica , Imunidade Inata , Proteínas de Insetos/genética , Larva , Modelos Animais , Filogenia , Interferência de RNA , Proteínas Recombinantes/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Transcriptoma
7.
Aquat Toxicol ; 208: 1-11, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30592983

RESUMO

Proline (Pro) metabolism is intimately associated with stress adaptation. The catabolism of Pro includes two dehydrogenation reactions catalyzed by proline dehydrogenase (ProDH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDh). P5CDh is a mitochondrial matrix NAD+-dependent dehydrogenase that is critical in preventing P5C-Pro intensive cycling and avoiding ROS production from electron run-off. Little is known about the roles of P5CDh in invertebrates, however. We cloned the P5CDh sequence in the Pacific white shrimp, Litopenaeus vannamei, and found that LvP5CDh is expressed predominantly in pleopod, hepatopancreas and gill. Subcellular localization analysis revealed that LvP5CDh protein was mainly found in the cytoplasm. In addition, overexpressing LvP5CDh in cells reduced ROS formation and inhibited apoptosis induced by LC50 Cd2+. Shrimp were exposed to various stress factors including infection with Vibrio alginolyticus, (½ LC50 and LC50) Cd2+, acid (pH 5.6) and alkali stress (pH 9.3). Both biotic and abiotic stress resulted in increased LvP5CDh expression and Pro accumulation; V. alginolyticus infection, pH 9.3 and LC50 Cd2+ stress apparently stimulated the Glu pathway of Pro synthesis, while pH 5.6 and ½ LC50 Cd2+ stress promoted the Orn pathway of Pro synthesis. Silencing of Lvp53 in shrimp attenuated LvP5CDh expression during Cd2+ stress, but had no effect on LvP5CDh mRNA levels if no Cd2+ stress was imposed. Our study contributes to the functional characterization of LvP5CDh in biotic and abiotic stress and reveals it to protect against ROS generation, damage to the cell, including the mitochondria, and apoptosis. Thus, LvP5CDh plays a critical role in immune defense and antioxidant responses.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Penaeidae/enzimologia , Penaeidae/fisiologia , Estresse Fisiológico , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Apoptose , DNA Complementar/genética , Inativação Gênica , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Especificidade de Órgãos , Penaeidae/virologia , Peptídeos/química , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA