Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biomol Biomed ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38733632

RESUMO

Diabetic nephropathy (DN) is a severe complication of prolonged diabetes, impacting millions worldwide with an increasing incidence. This study investigates the role of tribbles pseudokinase 3 (TRIB3), a protein implicated in the progression of DN, focusing on its mechanisms underlying glomerular damage. Through analysis of the Gene Expression Omnibus (GEO) database, we identified TRIB3 among differentially expressed genes in streptozotocin (STZ)-treated C57BL/6J mice. Both in vitro and in vivo experiments were conducted to examine the effects of TRIB3 inhibition on high glucose (HG)-induced damage in podocytes and DN mouse models. The results demonstrated that TRIB3 inhibition reduced inflammatory responses and extracellular matrix (ECM) production in MPC5 cells, mediated by the downregulation of DNA damage-inducible transcript 3 (DDIT3) - a critical regulator of proinflammatory cytokine secretion and ECM synthesis. Inhibiting TRIB3 decreased inflammatory factors and ECM deposition in diabetic mice in vivo, confirming its pivotal role in DN pathogenesis. These findings indicate that TRIB3 and its interaction with DDIT3 contribute significantly to DN by promoting inflammatory cascades and ECM accumulation, presenting potential therapeutic targets for managing the disease.

2.
Mol Carcinog ; 63(7): 1221-1234, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38517039

RESUMO

Pancreatic cancer (PC), a leading cause of cancer-related deaths, has a 5-year survival rate of approximately 10%. α-Enolase (ENO1) is a junction channel protein involved in tumor cell apoptosis and chemoresistance. However, the role of ENO1 in PC remains unclear. The expression and prognosis of ENO1 levels were determined in PC using public databases based on The Cancer Genome Atlas (TCGA) data sets. Cell viability, half maximal inhibitory concentration (IC50), autophagy, apoptosis, and autophagy markers were examined using cell counting kit-8 (CCK-8), transmission electron microscope, flow cytometry assays, and immunoblot, respectively. Using the Gene Expression Omnibus (GEO) and TCGA data sets, we found that ENO1 was significantly enriched in PC tumor tissues, and high expression levels of ENO1 were associated with an unfavorable prognosis. Whereas ENO1 silencing suppressed proliferation, autophagy, and induced cell apoptosis in PC cells, and inhibited tumor growth in vivo. Mechanistically, knockdown of ENO1 enhanced cellular cytotoxicity of gemcitabine (GEM), as well as reducing the expression of yes-associated protein 1 (YAP1), a major downstream effector of the Hippo pathway in vitro. YAP1 promoted autophagy and protected PC cells from GEM-induced apoptotic cell death. Furthermore, YAP1 overexpression attenuated the inhibition effects of ENO1 silencing. Our results suggest that ENO1 overexpression promotes cell growth and tumor progression by increasing the expression of YAP1 in PC. Further studies are required to understand the detailed mechanisms between ENO1 and YAP1 in PC.


Assuntos
Apoptose , Proteínas de Ligação a DNA , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Fosfopiruvato Hidratase , Transdução de Sinais , Fatores de Transcrição , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Proteínas de Sinalização YAP/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Linhagem Celular Tumoral , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Prognóstico , Proliferação de Células/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Masculino , Feminino , Antimetabólitos Antineoplásicos/farmacologia , Biomarcadores Tumorais
3.
J Med Chem ; 66(11): 7405-7420, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37220641

RESUMO

Covalent kinase inhibitors (CKIs) hold great promise for drug development. However, examples of computationally guided design of CKIs are still scarce. Here, we present an integrated computational workflow (Kin-Cov) for rational design of CKIs. The design of the first covalent leucine-zipper and sterile-α motif kinase (ZAK) inhibitor was presented as an example to showcase the power of computational workflow for CKI design. The two representative compounds, 7 and 8, inhibited ZAK kinase with half-maximal inhibitory concentration (IC50) values of 9.1 and 11.5 nM, respectively. Compound 8 displayed an excellent ZAK target specificity in Kinome profiling against 378 wild-type kinases. Structural biology and cell-based Western blot washout assays validated the irreversible binding characteristics of the compounds. Our study presents a rational approach for the design of CKIs based on the reactivity and accessibility of nucleophilic amino acid residues in a kinase. The workflow is generalizable and can be applied to facilitate CKI-based drug design.


Assuntos
Desenho de Fármacos , Proteínas Quinases , Fluxo de Trabalho , Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
4.
Nanoscale ; 15(7): 3542-3549, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723142

RESUMO

Metal-organic framework (MOF)-based heterostructures have aroused widespread interest owing to their extensive compositional tunability and interesting catalytic properties. However, the precise edge-oriented growth of transition metal compounds at the edges of 2D MOFs to construct edge mode heterostructures remains a great challenge due to their inherent thermodynamic instability. Here, edge-oriented growth of Ni2P at the edges of a 2D Ni-MOF was achieved for the first time by precisely tuning the phosphorus source content and phosphating temperature. Owing to the formation of the edge mode Ni-MOF/Ni2P heterostructure, the as-prepared heterostructure showed upregulated d-band center, more robust 4-nitrophenol (4-NP) adsorption capacity, lowered energy barrier of the rate-determining step (RDS), and higher specific surface area, resulting in the best performance of the hydrogenation reduction of 4-NP to 4-aminophenol (4-AP) in the presence of non-precious metal catalysts.

5.
J Hazard Mater ; 427: 128135, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34999403

RESUMO

The detection of mercury, one of the ten most dangerous chemicals, is significant to provide helpful information for assessing mercury toxicity and health risks. However, it is a challenge to explore simple, sensitive, accurate, and cheap Hg2+ detection methods. Noble metal nanomaterials are used for Hg2+ detection by the colorimetric method widely. Still, the pure noble metal materials' detection limit of Hg2+ is high, and sensitivity enhancement usually requires further complex modification. Here, we use a facile one-step route to synthesize ultra-thin two-dimensional palladium nanosheets (PdNS), which have high selectivity and sensitivity for Hg2+ detection by colorimetric method with a low detection limit (0.55 ppb). The detection of Hg2+ by PdNS involves multiple mechanisms, including the formation of amalgam and PdO to improve the peroxidase-mimic activity of PdNS and PdNS motor function to increase its collision probability with the detection reactant. The PdNS can be used to detect Hg2+ in various actual samples. The detection results are highly consistent with the data obtained by the atomic fluorescence spectrometer (AFS). Then, we developed a Hg2+ detection kit, which can realize simple, sensitive, and accurate Hg2+ detection by naked eye or cellphone at a meager cost (0.3 dollars each sample).


Assuntos
Mercúrio , Paládio , Colorimetria , Cadeia Alimentar , Peroxidase
6.
Environ Sci Pollut Res Int ; 29(10): 14733-14742, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34618319

RESUMO

Sewage sludge-derived biochars (SSBCs) were obtained at temperatures of 300, 500, and 700 °C to investigate the potentially toxic elements (PTEs) behaviors and assess the environmental acceptability for the possible application in the environment. Results indicated that PTEs exhibited diversely in the distribution of chemical speciation, while all elements tended to be immobilized in biochar matrix and the total amount elevated during the pyrolysis. The risk assessment of biochars implied a low degree of environmental risk for the utilization of SSBCs prepared at high temperatures. In addition, higher pyrolysis temperature alleviated the inhibition on the early seedling growth of Triticum aestivum L., with root elongation more sensitive to the biochar addition. PTEs, especially Cr, contributed much to the phytotoxicity of biochars as revealed by the principle component analysis (PCA) and leaner correlation analysis. Findings from this work illustrated that SSBCs prepared at higher temperatures might be more conductive to a wide range of applications with acceptable environmental risk.


Assuntos
Carvão Vegetal , Esgotos , Pirólise , Temperatura
7.
Water Res ; 209: 117904, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34864621

RESUMO

The incomplete removal of N-nitrosamines in water through current degraded techniques and the carcinogenicity of N-nitrosamines call for alternative complete and safe removal approaches. Here, we describe a cyclic coupling process of photocatalysis and adsorption enabling N-nitrosamines in water thoroughly and safely removed. Among them, the immobilized TiO2/Ti photocatalyst degraded N-nitrosamines into primary and secondary amines up to 100% by attacking on nitrosyl nitrogen via •OH originated from its nanowire film morphology. Furthermore, the affinity of HY zeolite to primary and secondary amines led to efficient adsorption through corresponding to Lagergren adsorption rate equation of second order. And then the cyclic coupling process of photocatalysis and adsorption realized complete and safe removal of N-nitrosamines with various concentration ranging from 0.1 mM to 1 mM in water, significantly higher than the existing reports on the removal rate of N-nitrosamines and the formation potential of N-nitrosamines. This study will lead to new avenues for complete and safe eliminaton of hardly degradable hazardous substances in water.

8.
J Mater Chem B ; 9(43): 9023-9030, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34635887

RESUMO

Acute kidney injury (AKI) is a severe clinical disease with extremely high morbidity and mortality. It is challenging to find a simple method for early detection of AKI and monitoring the treatment results. Renal tubular damage and inflammation are early events in AKI. Renal tubular damage is conducive to the accumulation of small-sized nanoparticles in the kidney, and inflammation is related to the excessive production of H2O2. Recent studies proved that chiral molecule modification of nanomaterials is a powerful strategy to regulate their biodistribution. Thus, L-serine and D-serine modified poly(amidoamine) (PAMAM) dendrimers were synthesized and used as fluorescent probe (NPSH) carriers to obtain L-SPH and D-SPH, respectively. D-SPH has a strong accumulation capability in the kidney of AKI mice. Then, the H2O2 fluorescent probe can detect the excessively produced H2O2 to generate fluorescence to diagnose AKI. Subsequently, the anti-inflammatory drug manganese pentacarbonyl bromide (CORM) was loaded in D-SPH to obtain D-SPHC with AKI theragnostic functions. Simultaneously, the D-SPHC fluorescence signal intensity change during the treatment can be used to monitor the recovery process. This study is the first report of chiral materials used in the diagnosis and treatment of AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Dendrímeros/uso terapêutico , Nanomedicina , Serina/uso terapêutico , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/metabolismo , Animais , Dendrímeros/química , Corantes Fluorescentes/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Camundongos , Estrutura Molecular , Tamanho da Partícula , Células RAW 264.7 , Serina/química , Estereoisomerismo , Propriedades de Superfície
9.
Artigo em Inglês | MEDLINE | ID: mdl-34186154

RESUMO

Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) is a serine/threonine protein kinase that acts as a key regulator and is widely involved in various innate and acquired immune signaling pathways. In this study, we first cloned the complete open reading frame (ORF) of the MEKK3 gene (named CcMEKK3) in a hybrid snakehead (Channa maculate ♀ × Channa argus ♂). The full-length ORF of CcMEKK3 is 1851 bp, and encodes a putative protein of 616 amino acids containing a serine/threonine kinase catalytic (S-TKc) domain and a Phox and Bem1p (PB1) domain. A sequence alignment and phylogenetic tree analysis showed that CcMEKK3 is highly conserved relative to the MEKK3 proteins of other teleost species. CcMEKK3 was constitutively expressed in all the healthy hybrid snakehead tissues tested, with greatest expression in the immune tissues, such as the head kidney and spleen. The expression of CcMEKK3 was usually upregulated in the head kidney, spleen, and liver at different time points after infection with Nocardia seriolae or Aeromonas schubertii. Similarly, the dynamic expression levels of CcMEKK3 in head kidney leukocytes after stimulation revealed that CcMEKK3 was induced by LTA, LPS, and poly(I:C). In the subcellular localization analysis, CcMEKK3 was evenly distributed in the cytoplasm of HEK293T cells, and its overexpression significantly promoted the activities of NF-κB and AP-1. These results suggest that CcMEKK3 is involved in the immune defense against these two pathogens, and plays a crucial role in activating the NF-κB and MAPK signaling pathways.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Imunidade Inata/imunologia , MAP Quinase Quinase Quinase 3/metabolismo , Nocardiose/imunologia , Aeromonas/imunologia , Aeromonas/metabolismo , Animais , Doenças dos Peixes/microbiologia , Proteínas de Peixes/imunologia , Peixes/metabolismo , Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , MAP Quinase Quinase Quinase 3/imunologia , Nocardia/imunologia , Nocardia/metabolismo , Nocardiose/metabolismo , Nocardiose/microbiologia
10.
Immunopharmacol Immunotoxicol ; 43(2): 223-229, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33583301

RESUMO

CONTEXT: Puerarin, a natural isoflavone extracted from Radix puerariae, is famous for treating various cardiovascular and cerebrovascular diseases. However, little is known about its direct immunomodulatory activity. OBJECTIVE: This study was designed to investigate the in vitro and in vivo immunomodulatory effects of Radix puerariae by using the murine monocyte-macrophage cell line RAW264.7 and immunosuppressed cyclophosphamide-induced mice. METHODS: MTT and neutral red phagocytosis assays were conducted to evaluate the in vitro immunomodulatory activities of puerarin on cell viability and phagocytosis by measuring the proliferation, phagocytic, nitric oxide (NO) ability, and TNF-α production ability of stimulated and lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Immunosuppressed cyclophosphamide-induced mice were used to evaluate the in vivo immunomodulatory activities of puerarin by measuring IL-4 and IFN-γ, the serum half hemolysis value, spleen and thymus index, and proliferation assay for splenic lymphocytes. RESULTS AND DISCUSSION: Results showed that puerarin improves immunomodulatory activity by increasing cell proliferation, cell phagocytosis, and NO secretion in RAW264.7 macrophages and reduces the abnormal immunologic activity by decreasing cell phagocytosis and NO secretion in LPS-stimulated RAW264.7 macrophages. In addition, puerarin enhanced the immunologic activity of cyclophosphamide-induced immunosuppression mice by increasing the secretion of NO, IFN-γ, and IL-4, the serum half hemolysis value (HC50), the spleen and thymus index, and proliferation for splenic lymphocytes. CONCLUSION: Puerarin exhibited an upregulated immunomodulatory effect on RAW264.7 macrophages and immunosuppression mice. In addition, puerarin had a downregulated immunomodulatory effect on RAW264.7 macrophages. The results suggest that puerarin could be a promising immunomodulator to assist in the treatment of tumors.


Assuntos
Ciclofosfamida/toxicidade , Fatores Imunológicos/farmacologia , Terapia de Imunossupressão/métodos , Imunossupressores/toxicidade , Isoflavonas/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Relação Dose-Resposta a Droga , Macrófagos/imunologia , Masculino , Camundongos , Células RAW 264.7
11.
Chem Eng J ; 410: 128410, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33519294

RESUMO

Nitrogen doped Mg2TiO4 spinel, i.e. Mg2TiO4-xNy, has been synthesized and investigated as a photocatalyst for antibacterial activity. Mg2TiO4-xNy demonstrates superior photocatalytic activity for E. coli disinfection under visible light illumination (λ ≥ 400 nm). Complete disinfection of E. coli at a bacterial cell density of 1.0 × 107 CFU mL-1 can be achieved within merely 60 min. Mg2TiO4-xNy is capable of generating superoxide radicals (•O2 -) under visible light illumination which are the reactive oxygen species (ROSs) for bacteria disinfection. DFT calculations have verified the importance of nitrogen dopants in improving the visible light sensitivity of Mg2TiO4-xNy. The facile synthesis, low cost, good biocompatibility and high disinfection activity of Mg2TiO4-xNy warrant promising applications in the field of water purification and antibacterial products.

12.
Nat Commun ; 12(1): 1028, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589610

RESUMO

Upon binding to DNA breaks, poly(ADP-ribose) polymerase 1 (PARP1) ADP-ribosylates itself and other factors to initiate DNA repair. Serine is the major residue for ADP-ribosylation upon DNA damage, which strictly depends on HPF1. Here, we report the crystal structures of human HPF1/PARP1-CAT ΔHD complex at 1.98 Å resolution, and mouse and human HPF1 at 1.71 Å and 1.57 Å resolution, respectively. Our structures and mutagenesis data confirm that the structural insights obtained in a recent HPF1/PARP2 study by Suskiewicz et al. apply to PARP1. Moreover, we quantitatively characterize the key residues necessary for HPF1/PARP1 binding. Our data show that through salt-bridging to Glu284/Asp286, Arg239 positions Glu284 to catalyze serine ADP-ribosylation, maintains the local conformation of HPF1 to limit PARP1 automodification, and facilitates HPF1/PARP1 binding by neutralizing the negative charge of Glu284. These findings, along with the high-resolution structural data, may facilitate drug discovery targeting PARP1.


Assuntos
Proteínas de Transporte/química , DNA/química , Histonas/química , Proteínas Nucleares/química , Poli(ADP-Ribose) Polimerase-1/química , Serina/metabolismo , ADP-Ribosilação , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutamina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática
13.
Fish Shellfish Immunol ; 104: 470-477, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32585357

RESUMO

Tumor necrosis factor-α (TNF-α) is a pluripotent mediator of pro-inflammatory and antimicrobial defense mechanisms and a regulator of lymphoid organ development. Although two types of TNF-α have been identified in several teleost species, their functions in pathogen infection remain largely unexplored, especially in pathogen clearance. Herein, we cloned and characterized two types of TNF-α, termed shTNF-α1 and shTNF-α2, and their receptors, shTNFR1 and shTNFR2, from snakehead (Channa argus). These genes were constitutively expressed in all tested tissues, and were induced by Aeromonas schubertii and Nocardia seriolae in head kidney and spleen in vivo, and by lipoteichoic acid (LTA), lipopolysaccharides (LPS), and Polyinosinic-polycytidylic acid [Poly (I:C)] in head kidney leukocytes (HKLs) in vitro. Moreover, recombinant shTNF-α1 and shTNF-α2 upregulated the expression of endogenous shTNF-α1, shTNF-α2, shTNFR1, and shTNFR2, and enhanced intracellular bactericidal activity, with shTNF-α1 having a greater effect than shTNF-α2. These findings suggest important roles of fish TNFα1, TNFα2, and their receptors in bacterial infection and pathogen clearance, and provide a new insight into their function in antibacterial innate immunity.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Imunidade Inata/genética , Receptores do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Aeromonas/fisiologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Rim Cefálico/imunologia , Leucócitos/imunologia , Lipopolissacarídeos/farmacologia , Nocardia/fisiologia , Nocardiose/imunologia , Nocardiose/veterinária , Poli I-C/farmacologia , Receptores do Fator de Necrose Tumoral/imunologia , Baço/imunologia , Ácidos Teicoicos/farmacologia , Fator de Necrose Tumoral alfa/imunologia
14.
Fish Shellfish Immunol ; 100: 309-316, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32173451

RESUMO

As a central pro-inflammatory cytokine, interleukin-1ß (IL-1ß) plays critical roles in the inflammatory response, pathogen infection, and immunological challenges in mammals. Although fish IL-1ß has been confirmed to participate in inflammatory response to pathogen infection, few studies have been performed to characterize the antibacterial and bactericidal functions of fish IL-1ß. In this study, snakehead (Channa argus) IL-1ß (shIL-1ß) and its receptors, shIL-1R1 and shIL-1R2, were cloned and functionally characterized. ShIL-1ß contained the IL-1 family signature domain, and a potential cutting site at Asp96 that presented in all vertebrate IL-1ß sequences. ShIL-1R1 had three extracellular IG-like domains and one intracellular signal TIR domain, while shIL-1R2 had three extracellular IG-like domain but lacked the intracellular signal TIR domain. ShIL-1ß, shIL-1R1, and shIL-1R2 were constitutively expressed in all tested tissues, and their expressions could be induced by Aeromonas schubertii and Nocardia seriolae in the head kidney and spleen in vivo, and by LTA, LPS, and Poly (I:C) in head kidney leukocytes (HKLs) in vitro. Moreover, recombinant shIL-1ß upregulated the expression of endogenous shIL-1ß, shIL-R1, and shIL-R2 in snakehead HKLs, and enhanced intracellular bactericidal activity. Taken together, this study found that, like IL-1ß and its receptors in mammals, shIL-1ß and its receptors play crucial roles in antibacterial innate immunity. This provides new insight into the evolution of IL-1ß function in vertebrates.


Assuntos
Bactérias/imunologia , Infecções Bacterianas/veterinária , Carpas/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata , Interleucina-1beta/genética , Receptores de Interleucina-1/genética , Animais , Antibacterianos , Infecções Bacterianas/imunologia , Carpas/genética , Carpas/microbiologia , Clonagem Molecular , Doenças dos Peixes/microbiologia , Rim Cefálico/imunologia , Interleucina-1beta/imunologia , Receptores de Interleucina-1/imunologia
15.
J Med Chem ; 63(5): 2114-2130, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31244114

RESUMO

ZAK is a new promising target for discovery of drugs with activity against antihypertrophic cardiomyopathy (HCM). A series of 1,2,3-triazole benzenesulfonamides were designed and synthesized as selective ZAK inhibitors. One of these compounds, 6p binds tightly to ZAK protein (Kd = 8.0 nM) and potently suppresses the kinase function of ZAK with single-digit nM (IC50 = 4.0 nM) and exhibits excellent selectivity in a KINOMEscan screening platform against a panel of 403 wild-type kinases. This compound dose dependently blocks p38/GATA-4 and JNK/c-Jun signaling and demonstrates promising in vivo anti-HCM efficacy upon oral administration in a spontaneous hypertensive rat (SHR) model. Compound 6p may serve as a lead compound for new anti-HCM drug discovery.


Assuntos
Desenho de Fármacos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Triazóis/farmacologia , Animais , Humanos , Zíper de Leucina/efeitos dos fármacos , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Relação Estrutura-Atividade , Sulfonamidas/sangue , Sulfonamidas/síntese química , Sulfonamidas/química , Triazóis/sangue , Triazóis/síntese química , Triazóis/química , Benzenossulfonamidas
16.
Ecotoxicol Environ Saf ; 185: 109664, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31536914

RESUMO

Effects of sewage sludge biochars (SSBCs) on the growth of wheat and the specific toxicological mechanisms were investigated from a metabolic perspective for better ecological risk assessment. We observed that conversion of sludge to biochar remarkably changed the properties, and also caused a significant (p < 0.05) reduction of the toxicity towards wheat. Wheat growth under exposure to SSBCs was influenced by the pyrolysis temperature (300 °C, 500 °C and 700 °C), with root length being promoted by SSBCs prepared at higher temperatures (500 °C and 700 °C). In addition to the contaminants, including polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) detected in SSBCs, the morphological characteristics of biochars contributed substantially to the wheat growth. Metabolomics analysis revealed the remarkable differences in the metabolic profiles among the control (CK), SS300- and SS700-treated samples. The toxicological mechanisms involved were found to be associated with the regulation of metabolisms pathways of protein, fatty acids and carbohydrates, among which protein metabolism was most affected by SSBCs. This work presents an innovative concept that SSBCs produced at a proper temperature may minimize the toxic effects on plant growth by regulating the metabolic fluxes in vivo.


Assuntos
Carvão Vegetal/toxicidade , Temperatura Alta , Metaboloma/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Esgotos/química , Triticum/efeitos dos fármacos , Metabolômica , Pirólise , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
17.
J Hazard Mater ; 343: 276-284, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28988053

RESUMO

Sawdust and wheat straw biochars prepared at 300°C and 500°C were applied to petroleum-polluted soil for an 84-day incubation to estimate their effectiveness on polycyclic aromatic hydrocarbons (PAHs) removal. Biochars alone were most effective at reducing PAHs contents. However, adding biochar to soils in company with NaN3 solution resulted in a decreasing trend in terms of PAHs removal, which was even lower than treatment CK without biochar. Moreover, it was discovered by PCR-DGGE files and sequencing analysis that the predominant bacterial diversity slightly decreased but the abundance of some specific taxa, including PAHs degraders, was promoted with biochar input. These results highlighted the potential of biochar application on accelerating PAHs biodegradation, which could be attributed to the properties of biochars that benefit for making the amended soil a better habitat for microbes. The impacts of biochar preparation and pollutants nature on PAHs removal were also determined. Significant reduction in the PAHs contents was detected when adding biochar prepared at a high temperature (500°C), while the feedstocks of biochar showed little effect on PAHs removal. Due to the high hydrophobicity of aromatic rings, high-molecular weight PAHs were found much more resistant to microbial degradation in comparison with low-molecular weight PAHs.


Assuntos
Carvão Vegetal/farmacologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Genes Bacterianos/genética , Peso Molecular , Petróleo , Hidrocarbonetos Policíclicos Aromáticos/química , RNA Ribossômico 16S/genética , Microbiologia do Solo , Poluentes do Solo/química , Triticum
18.
Biochem Biophys Res Commun ; 488(2): 266-272, 2017 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-28456628

RESUMO

Drug-resistance is a major challenge in targeted therapy of EGFR mutated non-small cell lung cancers (NSCLCs). The third-generation irreversible inhibitors such as AZD9291, CO-1686 and WZ4002 can overcome EGFR T790M drug-resistance mutant through covalent binding through Cys 797, but ultimately lose their efficacy upon emergence of the new mutation C797S. To develop new reversible inhibitors not relying on covalent binding through Cys 797 is therefore urgently demanded. Gö6976 is a staurosporine-like reversible inhibitor targeting T790M while sparing the wild-type EGFR. In the present work, we reported the complex crystal structures of EGFR T790M/C797S + Gö6976 and T790M + Gö6976, along with enzyme kinetic data of EGFR wild-type, T790M and T790M/C797S. These data showed that the C797S mutation does not significantly alter the structure and function of the EGFR kinase, but increases the local hydrophilicity around residue 797. The complex crystal structures also elucidated the detailed binding mode of Gö6976 to EGFR and explained why this compound prefers binding to T790M mutant. These structural pharmacological data would facilitate future drug development studies.


Assuntos
Carbazóis/farmacologia , Receptores ErbB/química , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Carbazóis/química , Relação Dose-Resposta a Droga , Receptores ErbB/genética , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
19.
Sci Transl Med ; 8(352): 352ra108, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27535619

RESUMO

Tissue repair and regenerative medicine address the important medical needs to replace damaged tissue with functional tissue. Most regenerative medicine strategies have focused on delivering biomaterials and cells, yet there is the untapped potential for drug-induced regeneration with good specificity and safety profiles. The Hippo pathway is a key regulator of organ size and regeneration by inhibiting cell proliferation and promoting apoptosis. Kinases MST1 and MST2 (MST1/2), the mammalian Hippo orthologs, are central components of this pathway and are, therefore, strong target candidates for pharmacologically induced tissue regeneration. We report the discovery of a reversible and selective MST1/2 inhibitor, 4-((5,10-dimethyl-6-oxo-6,10-dihydro-5H-pyrimido[5,4-b]thieno[3,2-e][1,4]diazepin-2-yl)amino)benzenesulfonamide (XMU-MP-1), using an enzyme-linked immunosorbent assay-based high-throughput biochemical assay. The cocrystal structure and the structure-activity relationship confirmed that XMU-MP-1 is on-target to MST1/2. XMU-MP-1 blocked MST1/2 kinase activities, thereby activating the downstream effector Yes-associated protein and promoting cell growth. XMU-MP-1 displayed excellent in vivo pharmacokinetics and was able to augment mouse intestinal repair, as well as liver repair and regeneration, in both acute and chronic liver injury mouse models at a dose of 1 to 3 mg/kg via intraperitoneal injection. XMU-MP-1 treatment exhibited substantially greater repopulation rate of human hepatocytes in the Fah-deficient mouse model than in the vehicle-treated control, indicating that XMU-MP-1 treatment might facilitate human liver regeneration. Thus, the pharmacological modulation of MST1/2 kinase activities provides a novel approach to potentiate tissue repair and regeneration, with XMU-MP-1 as the first lead for the development of targeted regenerative therapeutics.


Assuntos
Fator de Crescimento de Hepatócito/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Regeneração/efeitos dos fármacos , Sulfonamidas/farmacologia , Acetaminofen/toxicidade , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Colite/induzido quimicamente , Colite/prevenção & controle , Cristalização , Fator de Crescimento de Hepatócito/química , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/transplante , Ensaios de Triagem em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lesão Pulmonar/tratamento farmacológico , Camundongos , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/química , Medicina Regenerativa , Serina-Treonina Quinase 3 , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/química , Pesquisa Translacional Biomédica
20.
Oncotarget ; 7(29): 45562-45574, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27322145

RESUMO

BCR gene fused ABL kinase is the critical driving force for the Philadelphia Chromosome positive (Ph+) Chronic Myeloid Leukemia (CML) and has been extensively explored as a drug target. With a structure-based drug design approach we have discovered a novel inhibitor CHMFL-074, that potently inhibits both the native and a variety of clinically emerged mutants of BCR-ABL kinase. The X-ray crystal structure of CHMFL-074 in complex with ABL1 kinase (PDB ID: 5HU9) revealed a typical type II binding mode (DFG-out) but relatively rare hinge binding. Kinome wide selectivity profiling demonstrated that CHMFL-074 bore a high selectivity (S score(1) = 0.03) and potently inhibited ABL1 kinase (IC50: 24 nM) and PDGFR α/ß (IC50: 71 nM and 88 nM). CHMFL-074 displayed strong anti-proliferative efficacy against BCR-ABL-driven CML cell lines such as K562 (GI50: 56 nM), MEG-01 (GI50: 18 nM) and KU812 (GI50: 57 nM). CHMFL-074 arrested cell cycle into the G0/G1 phase and induced apoptosis in the Ph+ CML cell lines. In addition, it potently inhibited the CML patient primary cell's proliferation but did not affect the normal bone marrow cells. In the CML cell K562 inoculated xenograft mouse model, oral administration of 100 mg/kg/d of CHMFL-074 achieved a tumor growth inhibition (TGI) of 65% without exhibiting apparent toxicity. As a potential drug candidate for fighting CML, CHMFL-074 is under extensive preclinical safety evaluation now.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA