Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 14(23): 4176-4184, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37939215

RESUMO

To simply and rapidly detect the highly phosphorylated tau protein at threonine 217 (p-tau217) as a precautionary measure against Alzheimer's disease and distinguish it from other neurodegenerative diseases, a novel immunosensor was prepared using luminol as the electrochemiluminescent (ECL) sensing probe reinforced by Au-Cu nanoparticles (Au-Cu NPs). The Au-Cu alloy NPs were prepared via a co-reduction reaction, exhibiting excellent conductivity and catalytic activity. These properties remarkably enhanced the ECL of luminol, providing a suitable background for the sensing response. After the Au-Cu NPs were decorated on the surface of indium tin oxide glass using 3-amino-propyl trimethoxysilane, the antibody of p-tau217 was immobilized via dominant Au-N bonding to enable the biological specificity of the immunosensor. When p-tau217 specifically interacted with an antibody to form an immune complex on the sensing interface, the ECL signal of the sensor was considerably inhibited by the resulting giant biomolecular complex. This complex prevented luminol diffusion to the electrode surface and electron transfer. The resulting immunosensor showed remarkable sensitivity to p-tau217, with a wide linear detection range from 5 to 600 pg/mL. A detection limit of 0.56 pg/mL was achieved, with recoveries in human serum ranging from 92.3 to 109%. This ECL immunosensor demonstrated high sensitivity and specificity toward p-tau217, along with good reproducibility and stability, providing a new approach for clinical research on Alzheimer's disease.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanopartículas , Humanos , Luminol , Doença de Alzheimer/diagnóstico , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Imunoensaio/métodos , Anticorpos , Medições Luminescentes/métodos , Ouro , Técnicas Eletroquímicas/métodos
2.
Nanoscale ; 7(39): 16481-92, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26395389

RESUMO

Control over the nanostructure morphology and growth orientation is in high demand for fundamental research and technological applications. Herein we report a general strategy to fabricate polar c-axis and nonpolar m-axis well-aligned III-nitride ternary nanotube arrays with controllable morphologies and compositions. By depositing AlN on the InN nanorod array templates and thermally removing the InN templates, InAlN nanotubes can be obtained. Polar c-axis and nonpolar m-axis nanotubes were formed on the c- and r-plane sapphire substrates, respectively. The nanotubes are single crystalline and highly ordered on the substrates, as revealed by X-ray diffraction, electron microscopy, and selected area electron microscopy characterization. It was found that the In droplets on top of the InN nanorods play a critical role in controlling the morphology of the nanotubes. By keeping or removing the In droplets, the obtained nanotubes exhibited both ends open or only one end open. And by varying the AlN deposition temperature, the In composition in the nanotubes can be changed from 0 to 0.29. The nanotube synthesis method is simple and can be applied to the formation of other III-nitride ternary (InGaN, and AlGaN) or quaternary (InAlGaN) alloy nanotube arrays.

3.
Sci Rep ; 4: 6416, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25231628

RESUMO

To improve the growth rate and crystal quality of AlN, the competitive growth mechanisms of AlN under different parameters were studied. The mass transport limited mechanism was competed with the gas-phase parasitic reaction and became dominated at low reactor pressure. The mechanism of strain relaxation at the AlN/Si interface was studied by transmission electron microscopy (TEM). Improved deposition rate in the mass-transport-limit region and increased adatom mobility were realized under extremely low reactor pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA