Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(26): 11447-11458, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38899977

RESUMO

Mine tailings are extremely oligotrophic environments frequently contaminated with elevated As and Sb, making As(III) and Sb(III) oxidation potentially important energy sources for the tailing microbiome. Although they have been proposed to share similar metabolic pathways, a systemic comparison of the As(III) and Sb(III) oxidation mechanisms and energy utilization efficiencies requires further elucidation. In this study, we employed a combination of physicochemical, molecular, and bioinformatic analyses to compare the kinetic and genetic mechanisms of As(III) and Sb(III) oxidation as well as their respective energy efficiencies for fueling the key nutrient acquisition metabolisms. Thiobacillus and Rhizobium spp. were identified as functional populations for both As(III) and Sb(III) oxidation in mine tailings by DNA-stable isotope probing. However, these microorganisms mediated As(III) and Sb(III) oxidation via different metabolic pathways, resulting in preferential oxidation of Sb(III) over As(III). Notably, both As(III) and Sb(III) oxidation can facilitate nitrogen fixation and phosphate solubilization in mine tailings, with Sb(III) oxidation being more efficient in powering these processes. Thus, this study provided novel insights into the microbial As(III) and Sb(III) oxidation mechanisms and their respective nutrient acquisition efficiencies, which may be critical for the reclamation of mine tailings.


Assuntos
Oxirredução , Antimônio/metabolismo , Mineração , Arsênio/metabolismo
2.
Environ Sci Technol ; 58(28): 12441-12453, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38900020

RESUMO

Degraded tailings generated by the mining of metal ores are major environmental threats to the surrounding ecosystems. Tailing reclamation, however, is often impeded due to adverse environmental conditions, with depleted key nutrients (i.e., nitrogen (N) and phosphorus (P)) and elevated sulfur and metal(loid) concentrations. Formation of biocrusts may significantly accelerate nutrient accumulation and is therefore an essential stage for tailing reclamation. Although suggested to play an important role, the microbial community composition and key metabolisms in biocrusts remain largely unknown and are therefore investigated in the current study. The results suggested that sulfur and arsenic oxidation are potential energy sources utilized by members of predominant biocrust bacterial families, including Beijerinckiaceae, Burkholderiaceae, Hyphomicrobiaceae, and Rhizobiaceae. Accordingly, the S and As oxidation potentials are elevated in biocrusts compared to those in their adjacent tailings. Biocrust growth, as proxied by chlorophyll concentrations, is enhanced in treatments supplemented with S and As. The elevated biocrust growth might benefit from nutrient acquisition services (i.e., nitrogen fixation and phosphorus solubilization) fueled by microbial sulfur and arsenic oxidation. The current study suggests that sulfur- and arsenic-oxidizing microorganisms may play important ecological roles in promoting biocrust formation and facilitating tailing reclamation.


Assuntos
Arsênio , Mineração , Oxirredução , Enxofre , Arsênio/metabolismo , Enxofre/metabolismo , Bactérias/metabolismo , Fósforo , Microbiologia do Solo , Biodegradação Ambiental
3.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38900902

RESUMO

Arsenate [As(V)] reduction is a major cause of arsenic (As) release from soils, which threatens more than 200 million people worldwide. While heterotrophic As(V) reduction has been investigated extensively, the mechanism of chemolithotrophic As(V) reduction is less studied. Since As is frequently found as a sulfidic mineral in the environment, microbial mediated sulfur oxidation coupled to As(V) reduction (SOAsR), a chemolithotrophic process, may be more favorable in sites impacted by oligotrophic mining (e.g. As-contaminated mine tailings). While SOAsR is thermodynamically favorable, knowledge regarding this biogeochemical process is still limited. The current study suggested that SOAsR was a more prevalent process than heterotrophic As(V) reduction in oligotrophic sites, such as mine tailings. The water-soluble reduced sulfur concentration was predicted to be one of the major geochemical parameters that had a substantial impact on SOAsR potentials. A combination of DNA stable isotope probing and metagenome binning revealed members of the genera Sulfuricella, Ramlibacter, and Sulfuritalea as sulfur oxidizing As(V)-reducing bacteria (SOAsRB) in mine tailings. Genome mining further expanded the list of potential SOAsRB to diverse phylogenetic lineages such as members associated with Burkholderiaceae and Rhodocyclaceae. Metagenome analysis using multiple tailing samples across southern China confirmed that the putative SOAsRB were the dominant As(V) reducers in these sites. Together, the current findings expand our knowledge regarding the chemolithotrophic As(V) reduction process, which may be harnessed to facilitate future remediation practices in mine tailings.


Assuntos
Arseniatos , Mineração , Oxirredução , Filogenia , Microbiologia do Solo , Enxofre , Arseniatos/metabolismo , Enxofre/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Ecossistema , Metagenoma , RNA Ribossômico 16S/genética , Poluentes do Solo/metabolismo
4.
Environ Pollut ; 349: 123909, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582183

RESUMO

Pteris vittata (P. vittata), an arsenic (As) hyperaccumulator commonly used in the phytoremediation of As-contaminated soils, contains root-associated bacteria (RAB) including those that colonize the root rhizosphere and endosphere, which can adapt to As contamination and improve plant health. As(III)-oxidizing RAB can convert the more toxic arsenite (As(III)) to less toxic arsenate (As(V)) under As-rich conditions, which may promote plant survial. Previous studies have shown that microbial As(III) oxidation occurs in the rhizospheres and endospheres of P. vittata. However, knowledge of RAB of P. vittata responsible for As(III) oxidation remained limited. In this study, members of the Comamonadaceae family were identified as putative As(III) oxidizers, and the core microbiome associated with P. vittata roots using DNA-stable isotope probing (SIP), amplicon sequencing and metagenomic analysis. Metagenomic binning revealed that metagenome assembled genomes (MAGs) associated with Comamonadaceae contained several functional genes related to carbon fixation, arsenic resistance, plant growth promotion and bacterial colonization. As(III) oxidation and plant growth promotion may be key features of RAB in promoting P. vittata growth. These results extend the current knowledge of the diversity of As(III)-oxidizing RAB and provide new insights into improving the efficiency of arsenic phytoremediation.


Assuntos
Arsenitos , Biodegradação Ambiental , Comamonadaceae , Oxirredução , Raízes de Plantas , Pteris , Microbiologia do Solo , Poluentes do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Arsenitos/metabolismo , Poluentes do Solo/metabolismo , Pteris/metabolismo , Comamonadaceae/metabolismo , Comamonadaceae/genética , Rizosfera , Arsênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA