Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Med Chem ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264152

RESUMO

Epigenetic therapies have emerged as a key paradigm for treating malignancies. In this study, a series of DNMT1/HDAC dual inhibitors were obtained by fusing the key pharmacophores from DNMT1 inhibitors (DNMT1i) and HDAC inhibitors (HDACi). Among them, compound (R)-23a demonstrated significant DNMT1 and HDAC inhibition both in vitro and in cells and largely phenocopied the synergistic effects of combined DNMT1i and HDACi in reactivating epigenetically silenced tumor suppressor genes (TSGs). This translated into a profound tumor growth inhibition (TGI = 98%) of (R)-23a in an MV-4-11 xenograft model, while displaying improved tolerability compared with single agent combination. Moreover, in a syngeneic MC38 mouse colorectal tumor model, (R)-23a outperformed the combinatory treatment in reshaping the tumor immune microenvironment and inducing tumor regression. Collectively, the novel DNMT1/HDAC dual inhibitor (R)-23a effectively reverses the cancer-specific epigenetic abnormalities and holds great potential for further development into cancer therapeutic agents.

2.
Org Lett ; 26(22): 4672-4677, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38787765

RESUMO

Picrachinentins A-F (1-6, respectively), six novel cyclopeptide alkaloid-type burpitides (CPABs), were isolated and fully elucidated from the EtOH extract of the stems and leaves of Picrasma chinensis. Structurally, compounds 1-6 have a 14-membered paracyclophane ring system that was closed through an ether bond between the ß-hydroxy amino acid and tyrosine and modified with a 4,5-methylenedioxybenzoyloxy (MDBz, 3 and 5) or hexanoyl (Hexa, 1, 2, 4, and 6) group at the N-terminus. Interestingly, this is the first report on the isolation and characterization of CPABs from plants of the Simaroubaceae family. In addition, all compounds showed a neuroprotective effect against H2O2-damaged SH-SY5Y cells. Compound 1 was further investigated for its neuroprotective activities using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease animal model, and it dramatically improved MPTP-impaired motor behavioral performance. Biochemical analysis revealed compound 1 restored the tyrosine hydroxylase expression in the striatum of the MPTP-damaged mouse brain, which demonstrates its protective effect on dopaminergic neurons.


Assuntos
Alcaloides , Fármacos Neuroprotetores , Peptídeos Cíclicos , Picrasma , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Animais , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/isolamento & purificação , Camundongos , Picrasma/química , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Estrutura Molecular , Humanos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/antagonistas & inibidores , Folhas de Planta/química , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
3.
Sci Adv ; 10(13): eadk4423, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536911

RESUMO

DNA methyltransferase inhibitor (DNMTi) efficacy in solid tumors is limited. Colon cancer cells exposed to DNMTi accumulate lysine-27 trimethylation on histone H3 (H3K27me3). We propose this Enhancer of Zeste Homolog 2 (EZH2)-dependent repressive modification limits DNMTi efficacy. Here, we show that low-dose DNMTi treatment sensitizes colon cancer cells to select EZH2 inhibitors (EZH2is). Integrative epigenomic analysis reveals that DNMTi-induced H3K27me3 accumulates at genomic regions poised with EZH2. Notably, combined EZH2i and DNMTi alters the epigenomic landscape to transcriptionally up-regulate the calcium-induced nuclear factor of activated T cells (NFAT):activating protein 1 (AP-1) signaling pathway. Blocking this pathway limits transcriptional activating effects of these drugs, including transposable element and innate immune response gene expression involved in viral defense. Analysis of primary human colon cancer specimens reveals positive correlations between DNMTi-, innate immune response-, and calcium signaling-associated transcription profiles. Collectively, we show that compensatory EZH2 activity limits DNMTi efficacy in colon cancer and link NFAT:AP-1 signaling to epigenetic therapy-induced viral mimicry.


Assuntos
Neoplasias do Colo , Proteína Potenciadora do Homólogo 2 de Zeste , Histonas , Humanos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Histonas/metabolismo , Metilação , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
4.
Fitoterapia ; 175: 105908, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479621

RESUMO

Three undescribed sesquiterpenes, designed as pichinenoid A-C (1-3), along with nine known ones (4-12) were isolated from the stems and leaves of Picrasma chinensis. The new isolates including their absolute configurations were elucidated based on extensive spectroscopic methods, single crystal X-ray diffraction, and electronic circular dichroism (ECD) experiments, as well as comparison with literature data. Structurally, compounds 1 and 2 are descending sesquiterpenes, while pichinenoid C (3) is a rare sesquiterpene bearing a 2-methylenebut-3-enoic acid moiety at the C-6 side chain. All the isolated compounds were tested for their neuroprotective effects against the H2O2-induced damage on human neuroblastoma SH-SY5Y cells, and most of them showed moderate neuroprotective activity. Especially, compounds 1, 3-5, and 7 showed a potent neuroprotective effect at 25 or 50 µM. Moreover, the neuroprotective effects of compounds 1 and 4 were tested on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Results of western blot and immunofluorescence indicated that compound 4 significantly counteract the toxicity of MPTP, and reversed the expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and striatum (ST) of the mouse brain. Interestingly, western blot data suggested compound 4 also enhanced B-cell lymphoma-2 (Bcl-2) and heme oxygenase 1 (HO-1) expressions in the brain tissues from MPTP damaged mouse.


Assuntos
Fármacos Neuroprotetores , Picrasma , Folhas de Planta , Caules de Planta , Sesquiterpenos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Camundongos , Humanos , Linhagem Celular Tumoral , Estrutura Molecular , Picrasma/química , Caules de Planta/química , Folhas de Planta/química , Masculino , Heme Oxigenase-1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , China , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Camundongos Endogâmicos C57BL
5.
ACS Chem Biol ; 19(4): 999-1010, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38513196

RESUMO

Nonreceptor tyrosine kinase c-Src plays a crucial role in cell signaling and contributes to tumor progression. However, the development of selective c-Src inhibitors turns out to be challenging. In our previous study, we performed posttranslational modification-inspired drug design (PTMI-DD) to provide a plausible way for designing selective kinase inhibitors. In this study, after identifying a unique pocket comprising a less conserved cysteine and an autophosphorylation site in c-Src as well as a promiscuous covalent inhibitor, chemical optimization was performed to obtain (R)-LW-Srci-8 with nearly 75-fold improved potency (IC50 = 35.83 ± 7.21 nM). Crystallographic studies revealed the critical C-F···C═O interactions that may contribute to tight binding. The kinact and Ki values validated the improved binding affinity and decreased warhead reactivity of (R)-LW-Srci-8 for c-Src. Notably, in vitro tyrosine kinase profiling and cellular activity-based protein profiling (ABPP) cooperatively indicated a specific inhibition of c-Src by (R)-LW-Srci-8. Intriguingly, (R)-LW-Srci-8 preferentially binds to inactive c-Src with unphosphorylated Y419 both in vitro and in cells, subsequently disrupting the autophosphorylation. Collectively, our study demonstrated the feasibility of developing selective kinase inhibitors by cotargeting a nucleophilic residue and a posttranslational modification site and providing a chemical probe for c-Src functional studies.


Assuntos
Proteína Tirosina Quinase CSK , Inibidores de Proteínas Quinases , Humanos , Proteína Tirosina Quinase CSK/antagonistas & inibidores , Proteína Tirosina Quinase CSK/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais , Quinases da Família src
6.
bioRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405904

RESUMO

The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. Nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). Here, we profile contributions of UHRF1 and DNMT1 to genome-wide DNA methylation inheritance and dissect specific roles for ubiquitin signaling in this process. We reveal DNA methylation maintenance at low-density CpGs is vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMD), a methylation signature observed across human cancers. Furthermore, disrupting DNMT1 UIM2 function abolishes DNA methylation maintenance. Collectively, we show DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to the development of PMDs in human cancers.

7.
Cancer Res ; 84(3): 419-433, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991725

RESUMO

Despite the immense success of immune checkpoint blockade (ICB) in cancer treatment, many tumors, including melanoma, exhibit innate or adaptive resistance. Tumor-intrinsic T-cell deficiency and T-cell dysfunction have been identified as essential factors in the emergence of ICB resistance. Here, we found that protein arginine methyltransferase 1 (PRMT1) expression was inversely correlated with the number and activity of CD8+ T cells within melanoma specimen. PRMT1 deficiency or inhibition with DCPT1061 significantly restrained refractory melanoma growth and increased intratumoral CD8+ T cells in vivo. Moreover, PRMT1 deletion in melanoma cells facilitated formation of double-stranded RNA derived from endogenous retroviral elements (ERV) and stimulated an intracellular interferon response. Mechanistically, PRMT1 deficiency repressed the expression of DNA methyltransferase 1 (DNMT1) by attenuating modification of H4R3me2a and H3K27ac at enhancer regions of Dnmt1, and DNMT1 downregulation consequently activated ERV transcription and the interferon signaling. Importantly, PRMT1 inhibition with DCPT1061 synergized with PD-1 blockade to suppress tumor progression and increase the proportion of CD8+ T cells as well as IFNγ+CD8+ T cells in vivo. Together, these results reveal an unrecognized role and mechanism of PRMT1 in regulating antitumor T-cell immunity, suggesting PRMT1 inhibition as a potent strategy to increase the efficacy of ICB. SIGNIFICANCE: Targeting PRMT1 stimulates interferon signaling by increasing expression of endogenous retroviral elements and double-stranded RNA through repression of DNMT1, which induces antitumor immunity and synergizes with immunotherapy to suppress tumor progression.


Assuntos
Interferons , Melanoma , Humanos , Melanoma/metabolismo , RNA de Cadeia Dupla , Linfócitos T CD8-Positivos , Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
8.
Bioorg Chem ; 143: 106963, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048700

RESUMO

Nicotinamide N-methyltransferase (NNMT) catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM) to nicotinamide (NAM) and other pyridine-related compounds and is involved in various metabolic processes in the human body. In addition, abnormal expression of NNMT occurs under various pathological conditions such as cancer, diabetes, metabolic disorders, and neurodegenerative diseases, making it a promising drug target worthy of in-depth research. Small-molecule NNMT inhibitors with high potency and selectivity are necessary chemical tools to test biological hypotheses and potential therapies. In this study, we developed a series of highly active NNMT inhibitors by modifying N7 position of adenine. Among them, compound 3-12 (IC50 = 47.9 ± 0.6 nM) exhibited potent inhibitory activity and also had an excellent selectivity profile over a panel of human methyltransferases. We showed that the N7 position of adenine in the NNMT bisubstrate inhibitor was a modifiable site, thus offering insights into the development of NNMT inhibitors.


Assuntos
Nicotinamida N-Metiltransferase , Tubercidina , Humanos , Nicotinamida N-Metiltransferase/química , Nicotinamida N-Metiltransferase/metabolismo , Tubercidina/metabolismo , Niacinamida/farmacologia , Adenina , Metabolismo Secundário
9.
Phytochemistry ; 218: 113932, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056516

RESUMO

Twenty-six clerodane diterpenoids have been isolated from T. sagittata, a plant species of traditional Chinese medicine Radix Tinosporae, also named as "Jin Guo Lan". Among them, there are eight previously undescribed clerodane diterpenoids (tinotanoids A-H: 1-8), and 18 known diterpenoids (9-26). The absolute configurations of compounds 1, 2, 5, 8, 13, 17 and 20 were determined by single-crystal X-ray diffraction. Compound 1 is the first example of rotameric clerodane diterpenoid with a γ-lactone ring which is constructed between C-11 and C-17; meanwhile, compounds 3 and 4 are two pairs of inseparable epimers. Compounds 2, 12 and 17 demonstrated excellent inhibitory activity on NO production against LPS-stimulated BV-2 cells with IC50 values of 9.56 ± 0.69, 9.11 ± 0.53 and 11.12 ± 0.70 µM, respectively. These activities were significantly higher than that of the positive control minocycline (IC50 = 23.57 ± 0.92 µM). Moreover, compounds 2, 12 and 17 dramatically reduced the LPS-induced upregulation of iNOS and COX-2 expression. Compounds 2 and 12 significantly inhibited the levels of pro-inflammatory cytokines TNF-α, IL-1ß and IL-6 that were increased by LPS stimulation.


Assuntos
Diterpenos Clerodânicos , Menispermaceae , Tinospora , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Tinospora/química , Lipopolissacarídeos/farmacologia , Raízes de Plantas/química , Estrutura Molecular
10.
Bioorg Chem ; 140: 106812, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37651894

RESUMO

A total of 17 structurally diverse clerodane diterpenoids, including ten undescribed clerodane diterpenoids (tinopanoids K-T, 1-10) and seven known compounds (11-17), were isolated from the vines and leaves of Tinospora crispa. Compound 3 has not only bear the dominant substituents of γ-hydroxy-α, ß-unsaturated-γ-lactone with anti-inflammatory activity, but also a ternary epoxy structure at C-3/C-4. The planar structures and relative configurations of the clerodane diterpenoids were elucidated by spectroscopic data interpretation. The absolute configurations of compounds 1, 4, 8 and 13 were determined by single-crystal X-ray crystallographic, while that of compound 3 was determined using computed ECD data and single crystal X-ray diffraction of related p-bromobenzoate ester (3a). Subsequently, all compounds were evaluated for their inhibitory effect on nitric oxide (NO) production of LPS-activated BV-2 cells, and compounds 3 and 8 exhibited better NO inhibitory potency, with IC50 values of 5.6 and 13.8 µM than the positive control minocycline (Mino, IC50 = 22.9 µM). The corresponding results of western blot analysis and qRT-PCR revealed that compound 3 can significantly inhibit the inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions, mRNA levels of pro-inflammatory cytokins of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6) and interleukin 1ß (IL-1ß). The underlying mechanism by which compound 3 exerted anti-neuroinflammatory effects was investigated by western blot and immunofluorescence assay, which suggested compound 3 inhibited LPS induced neuroinflammation via the suppression of toll-like receptor 4 (TLR4) dependent Signal Transducer and Activator of Transcription 3 (Stat3) and mitogen-activated protein kinase (MAPK) signaling pathways, and the activation of Heme Oxygenase-1 (HO-1) mediated signals.


Assuntos
Diterpenos Clerodânicos , Tinospora , Diterpenos Clerodânicos/farmacologia , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Western Blotting
11.
Materials (Basel) ; 16(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241298

RESUMO

Rare earth luminescent materials demonstrate significant advantages in lighting and energy saving, and detection etc. In this paper, a series of Ca2Ga2(Ge1-xSix)O7:y%Eu2+ phosphors were synthesized by high-temperature solid-state reaction and characterized by X-ray diffraction and luminescence spectroscopy methods. The powder X-ray diffraction patterns reveal that all the phosphors are isostructural with a space group of P4¯21m. The excitation spectra of Ca2Ga2(Ge1-xSix)O7:1%Eu2+ phosphors exhibit significant overlapping of the host and the Eu2+ absorption bands, which facilitates Eu2+ absorbing the energy to increase its luminescence efficiency when excited by visible photons. The emission spectra show that the Eu2+ doped phosphors have a broad emission band with a peak centered at 510 nm arising from the 4f65d1→4f7 transition. Variable temperature fluorescence reveals that the phosphor has a strong luminescence at low temperature but has a severe thermal quenching effect when temperature rises. The optimal Ca2Ga2(Ge0.5Si0.5)O7:1.0%Eu2+ phosphor shows promise for application in the field of fingerprint identification based on the experimental results.

12.
RSC Adv ; 13(10): 6346-6355, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36824231

RESUMO

Effective removal of strontium isotopes in radioactive waste streams has important implications for the environment and the sustainable development of nuclear energy. In this work, a zirconium phosphate/18-crown-ether-6 (ZrP/18C6) composite was prepared using the intercalation method by loading crown ether into zirconium phosphate. The composite was structurally and morphologically characterized by XRD, FT-IR, XPS, and SEM. The adsorption experiments of Sr2+ onto the ZrP/18C6 composite were conducted as a function of temperature, pH, Sr2+ concentration and competing ions. The results indicate ZrP/18C6 can adsorb 98.6% of Sr2+ within 30 minutes at an Sr2+ concentration of 100 mg L-1 and maintain a high removal rate with a distribution coefficient of 7 × 105 mL g-1 when Sr2+ is at a low level of 4.28 mg L-1. The ZrP/18C6 composite reached a maximum adsorption capacity of 195.74 mg g-1 at an Sr2+ concentration of 380 mg L-1, which is significantly higher than the 43.03 mg g-1 of α-ZrP. The adsorption performance of Sr2+ onto ZrP/18C6 is not significantly affected by temperature, pH and competing ions. Furthermore, the adsorption kinetics and thermodynamics were analyzed based on the adsorption data obtained in the present work. It is shown that the adsorption of Sr2+ onto ZrP/18C6 follows the pseudo-second-order model and the Langmuir monolayer model, respectively. Additionally, the adsorption mechanism of Sr2+ by ZrP/18C6 is discussed.

13.
J Enzyme Inhib Med Chem ; 37(1): 1537-1555, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35670075

RESUMO

The DNA methyltransferases (DNMTs) were found in mammals to maintain DNA methylation. Among them, DNMT1 was the first identified, and it is an attractive target for tumour chemotherapy. DC_05 and DC_517 have been reported in our previous work, which is non-nucleoside DNMT1 inhibitor with low micromolar IC50 values and significant selectivity towards other S-adenosyl-L-methionine (SAM)-dependent protein methyltransferases. In this study, through a process of similarity-based analog searching, a series of DNMT1 inhibitors were designed, synthesized, and evaluated as anticancer agents. SAR studies were conducted based on enzymatic assays. And most of the compounds showed strong inhibitory activity on human DNMT1, especially WK-23 displayed a good inhibitory effect on human DNMT1 with an IC50 value of 5.0 µM. Importantly, the pharmacokinetic (PK) profile of WK-23 was obtained with quite satisfying oral bioavailability and elimination half-life. Taken together, WK-23 is worth developing as DNMT1-selective therapy for the treatment of malignant tumour.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Carbazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/metabolismo , Humanos , Mamíferos/metabolismo
14.
Phytochemistry ; 196: 113083, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34999512

RESUMO

Five undescribed triterpenoids, two unusual omphalane-type sesquiterpenoids together with twenty-five known compounds were isolated from the leaves and stems of Rhododendron minutiflorum Hu. The absolute configurations of 1-3 and 6 were established by single-crystal X-ray diffraction analysis and electronic circular dichroism (ECD). Compounds 6-7 feature the rare omphalane-type sesquiterpene skeleton and are verified by single-crystal X-ray diffraction analysis for the first time. In the biological activity assay, most of the triterpenoids have different degrees of inhibitory effects on α-glucosidase, with IC50 values ranging from 6.97 to 229.3 µM (the positive control drug acarbose has an IC50 value of 3.07 × 10-3 µM). Structure and activity relationship (SAR) study reveals that the oxidation degrees of C-3, C-8, or C-11 to C-13 of the ursane-type triterpenoid influence the inhibitory activity dramatically.


Assuntos
Rhododendron , Estrutura Molecular , Rhododendron/química , Relação Estrutura-Atividade , Terpenos/farmacologia , alfa-Glucosidases/metabolismo
15.
J Med Chem ; 65(1): 785-810, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34962793

RESUMO

CREB (cyclic-AMP responsive element binding protein) binding protein (CBP) is a potential target for prostate cancer treatment. Herein, we report the structural optimization of a series of 1-(indolizin-3-yl)ethan-1-one compounds as new selective CBP bromodomain inhibitors, aiming to improve cellular potency and metabolic stability. This process led to compound 9g (Y08284), which possesses good liver microsomal stability and pharmacokinetic properties (F = 25.9%). Furthermore, the compound is able to inhibit CBP bromodomain as well as the proliferation, colony formation, and migration of prostate cancer cells. Additionally, the new inhibitor shows promising antitumor efficacy in a 22Rv1 xenograft model (TGI = 88%). This study provides new lead compounds for further development of drugs for the treatment of prostate cancer.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteína de Ligação a CREB/antagonistas & inibidores , Indolizidinas/síntese química , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Células CACO-2 , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Indolizidinas/farmacocinética , Indolizidinas/farmacologia , Masculino , Camundongos , Camundongos SCID , Microssomos Hepáticos , Modelos Moleculares , Simulação de Acoplamento Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Noncoding RNA ; 7(4)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34940762

RESUMO

The ability to differentiate between benign, suspicious, and malignant pulmonary nodules is imperative for definitive intervention in patients with early stage lung cancers. Here, we report that plasma protein functional effector sncRNAs (pfeRNAs) serve as non-invasive biomarkers for determining both the existence and the nature of pulmonary nodules in a three-stage study that included the healthy group, patients with benign pulmonary nodules, patients with suspicious nodules, and patients with malignant nodules. Following the standards required for a clinical laboratory improvement amendments (CLIA)-compliant laboratory-developed test (LDT), we identified a pfeRNA classifier containing 8 pfeRNAs in 108 biospecimens from 60 patients by sncRNA deep sequencing, deduced prediction rules using a separate training cohort of 198 plasma specimens, and then applied the prediction rules to another 230 plasma specimens in an independent validation cohort. The pfeRNA classifier could (1) differentiate patients with or without pulmonary nodules with an average sensitivity and specificity of 96.2% and 97.35% and (2) differentiate malignant versus benign pulmonary nodules with an average sensitivity and specificity of 77.1% and 74.25%. Our biomarkers are cost-effective, non-invasive, sensitive, and specific, and the qPCR-based method provides the possibility for automatic testing of robotic applications.

17.
J Med Chem ; 64(12): 8194-8207, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34077206

RESUMO

Disruption of EZH2-embryonic ectoderm development (EED) protein-protein interaction (PPI) is a new promising cancer therapeutic strategy. We have previously reported the discovery of astemizole, a small-molecule inhibitor targeting the EZH2-EED PPI. Herein, we report the cocrystal structure of EED in complex with astemizole at 2.15 Å. The structure elucidates the detailed binding mode of astemizole to EED and provides a structure-guided design for the discovery of a novel EZH2-EED interaction inhibitor, DC-PRC2in-01, with an affinity Kd of 4.56 µM. DC-PRC2in-01 destabilizes the PRC2 complex, thereby leading to the degradation of PRC2 core proteins and the decrease of global H3K27me3 levels in cancer cells. The proliferation of PRC2-driven lymphomas cells is effectively inhibited, and the cell cycle is arrested in the G0/G1 phase. Together, these data demonstrate that DC-PRC2in-01 could be an effective chemical probe for investigating the PRC2-related physiology and pathology and providing a promising chemical scaffold for further development.


Assuntos
Astemizol/análogos & derivados , Astemizol/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reposicionamento de Medicamentos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/síntese química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Complexo Repressor Polycomb 2/metabolismo , Relação Estrutura-Atividade
18.
Nanoscale Res Lett ; 16(1): 62, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33864528

RESUMO

Electrospun polymer nanofibers have gained much attention in blood vessel tissue engineering. However, conventional nanofiber materials with the deficiencies of slow endothelialization and thrombosis are not effective in promoting blood vessel tissue repair and regeneration. Herein, biomimetic gelatin (Gt)/polycaprolactone (PCL) composite nanofibers incorporating a different amount of chondroitin sulfate (CS) were developed via electrospinning technology to investigate their effects on antithrombogenicity and endothelial cell affinity. Varying CS concentrations in PG nanofibers affects fiber morphology and diameter. The CS/Gt/PCL nanofibers have suitable porosity (~ 80%) and PBS solution absorption (up to 650%). The introduction of CS in Gt/PCL nanofibers greatly enhances their anticoagulant properties, prolongs their coagulation time, and facilitates cell responses. Particularly, 10%CS/Gt/PCL nanofibers display favorable cell attachment, elongation, and proliferation. Thus, the Gt/PCL nanofibers containing a certain amount of CS could be excellent candidates as a promising tissue-engineering scaffold in blood vessel repair and regeneration.

19.
Neural Regen Res ; 16(12): 2453-2464, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33907034

RESUMO

The SOCS1/JAK2/STAT3 axis is strongly associated with tumor growth and progression, and participates in cytokine secretion in many diseases. However, the effects of the SOCS1/JAK2/STAT3 axis in experimental subarachnoid hemorrhage remain to be studied. A subarachnoid hemorrhage model was established in rats by infusing autologous blood into the optic chiasm pool. Some rats were first treated with JAK2/STAT3 small interfering RNA (Si-JAK2/Si-STAT3) or overexpression plasmids of JAK2/STAT3. In the brains of subarachnoid hemorrhage model rats, the expression levels of both JAK2 and STAT3 were upregulated and the expression of SOCS1 was downregulated, reaching a peak at 48 hours after injury. Simultaneously, the interactions between JAK2 and SOCS1 were reduced. In contrast, the interactions between JAK2 and STAT3 were markedly enhanced. Si-JAK2 and Si-STAT3 treatment alleviated cortical neuronal cell apoptosis and necrosis, destruction of the blood-brain barrier, brain edema, and cognitive functional impairment after subarachnoid hemorrhage. This was accompanied by decreased phosphorylation of JAK2 and STAT3 protein, decreased total levels of JAK2 and STAT3 protein, and increased SOCS1 protein expression. However, overexpression of JAK2 and STAT3 exerted opposite effects, aggravating subarachnoid hemorrhage-induced early brain injury. Si-JAK2 and Si-STAT3 inhibited M1-type microglial conversion and the release of pro-inflammatory factors (inducible nitric oxide synthase, interleukin-1ß, and tumor necrosis factor-α) and increased the release of anti-inflammatory factors (arginase-1, interleukin-10, and interleukin-4). Furthermore, primary neurons stimulated with oxyhemoglobin were used to simulate subarachnoid hemorrhage in vitro, and the JAK2 inhibitor AG490 was used as an intervention. The in vitro results also suggested that neuronal protection is mediated by the inhibition of JAK2 and STAT3 expression. Together, our findings indicate that the SOCS1/JAK2/STAT3 axis contributes to early brain injury after subarachnoid hemorrhage both in vitro and in vivo by inducing inflammatory responses. This study was approved by the Animal Ethics Committee of Anhui Medical University and the First Affiliated Hospital of University of Science and Technology of China (approval No. LLSC-20180202) on March 1, 2018.

20.
Life Sci ; 265: 118752, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188834

RESUMO

AIMS: Abdominal aortic aneurysm (AAA) is a multi-factorial progressive vascular disease characterized by chronic inflammatory cell infiltration. We investigated the roles played by IFI16 and ASC inflammasomes in AAA development and progression. MATERIALS AND METHODS: Western blot and qRT-PCR studies were performed to analyze the expression of relative genes in AAA specimens and mouse vascular smooth muscle cells (VSMCs). The apoptosis rates and ROS levels of VSMCs were assessed by flow cytometry. Transwell assays were performed to analyze the migration ability of VSMCs. The levels of MCP-1, IL-1ß, and IL-6 in the supernatants of cultured VSMCs were analyzed by ELISA. KEY FINDINGS: Increased levels of IFI16 expression were found in AAA specimens and Ang-II-treated VSMCs. IFI16 and ASC silencing suppressed the apoptosis and migration ability of VSMCs undergoing Ang-II treatment, reduced elasticity damage to the aortic wall, and decreased the levels of MMP expression. The effect of IFI16 knockdown in Ang-II-induced VSMCs was reversed by MCPIP1 overexpression. SIGNIFICANCE: Our data suggest that an up-regulation of IFI16 and ASC expression might promote the apoptosis of VSMCs, enhance the inflammatory response, and impairs vascular wall elasticity via a MCPIP1-related mechanism. The inflammasome components IFI16 and ASC might be involved in AAA progression and serve as target molecules for diagnosing and treating AAA.


Assuntos
Aneurisma da Aorta Abdominal/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ribonucleases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Aneurisma da Aorta Abdominal/etiologia , Western Blotting , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Humanos , Masculino , Músculo Liso Vascular/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA