Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1236, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871067

RESUMO

Reducing the energy loss of sub-cells is critical for high performance tandem organic solar cells, while it is limited by the severe non-radiative voltage loss via the formation of non-emissive triplet excitons. Herein, we develop an ultra-narrow bandgap acceptor BTPSeV-4F through replacement of terminal thiophene by selenophene in the central fused ring of BTPSV-4F, for constructing efficient tandem organic solar cells. The selenophene substitution further decrease the optical bandgap of BTPSV-4F to 1.17 eV and suppress the formation of triplet exciton in the BTPSV-4F-based devices. The organic solar cells with BTPSeV-4F as acceptor demonstrate a higher power conversion efficiency of 14.2% with a record high short-circuit current density of 30.1 mA cm-2 and low energy loss of 0.55 eV benefitted from the low non-radiative energy loss due to the suppression of triplet exciton formation. We also develop a high-performance medium bandgap acceptor O1-Br for front cells. By integrating the PM6:O1-Br based front cells with the PTB7-Th:BTPSeV-4F based rear cells, the tandem organic solar cell demonstrates a power conversion efficiency of 19%. The results indicate that the suppression of triplet excitons formation in the near-infrared-absorbing acceptor by molecular design is an effective way to improve the photovoltaic performance of the tandem organic solar cells.

2.
ACS Appl Mater Interfaces ; 14(46): 52058-52066, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36349970

RESUMO

A new unsymmetric small-molecule acceptor (SMA) BTPOSe-4F was designed by unsymmetric structure modification to Y6 with an alkyl upper side chain replaced by an alkoxy side chain and a sulfur atom in its central fused ring replaced by a selenium atom, for the application as an acceptor to fabricate organic solar cells (OSCs). BTPOSe-4F exhibits a higher lowest unoccupied molecular orbital (LUMO) energy level, a reduced nonradiation energy loss, and better charge extraction properties in its binary OSCs with a higher Voc of 0.886. Furthermore, the ternary OSCs with the addition of PC71BM demonstrated a higher power conversion efficiency (PCE) of 17.33% with Voc of 0.890 V. This work reveals that the unsymmetric modification strategy can further give impetus to the photovoltaic performance promotion of OSCs for Y6-series SMAs.

3.
J Phys Chem Lett ; 13(38): 8816-8824, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36107413

RESUMO

Energy loss caused by exciton binding energy (Eb) has become a key factor that restricts further advancement of organic solar cells (OSCs). Herein, we used transient mid-IR spectroscopy to study direct photogeneration of free charge carriers in small-molecule acceptors (SMAs) Y6 and IDIC as well as polymerized SMAs (PSMAs) PYFT and PZ1. We found that free carrier concentration is higher in PSMAs than in their corresponding SMAs, indicating reduced exciton Eb, which is then confirmed by ultraviolet photoelectron spectroscopy, low-energy inverse photoemission spectroscopy, and film absorption spectra measurements. The measured Eb values of PYFT and PZ1 are 0.24 and 0.37 eV, respectively, smaller than those of Y6 (0.32 eV) and IDIC (0.47 eV). This work not only provides a method to directly monitor the photogenerated free carriers in OSC materials but also demonstrates that polymerization is an effective strategy to reduce the Eb, which is crucial to decrease the energy losses in high-performance OSCs.

4.
Nat Commun ; 13(1): 5267, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071034

RESUMO

The polymerized small-molecule acceptors have attracted great attention for application as polymer acceptor in all-polymer solar cells recently. The modification of small molecule acceptor building block and the π-bridge linker is an effective strategy to improve the photovoltaic performance of the polymer acceptors. In this work, we synthesized a new polymer acceptor PG-IT2F which is a modification of the representative polymer acceptor PY-IT by replacing its upper linear alkyl side chains on the small molecule building block with branched alkyl chains and attaching difluorene substituents on its thiophene π-bridge linker. Through this synergistic optimization, PG-IT2F possesses more suitable phase separation, increased charge transportation, better exciton dissociation, lower bimolecular recombination, and longer charge transfer state lifetime than PY-IT in their polymer solar cells with PM6 as polymer donor. Therefore, the devices based on PM6:PG-IT2F demonstrated a high power conversion efficiency of 17.24%, which is one of the highest efficiency reported for the binary all polymer solar cells to date. This work indicates that the synergistic regulation of small molecule acceptor building block and π-bridge linker plays a key role in designing and developing highly efficient polymer acceptors.

5.
Nat Commun ; 12(1): 5264, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489439

RESUMO

All-polymer solar cells (all-PSCs) based on polymerized small molecular acceptors (PSMAs) have made significant progress recently. Here, we synthesize two A-DA'D-A small molecule acceptor based PSMAs of PS-Se with benzo[c][1,2,5]thiadiazole A'-core and PN-Se with benzotriazole A'-core, for the studies of the effect of molecular structure on the photovoltaic performance of the PSMAs. The two PSMAs possess broad absorption with PN-Se showing more red-shifted absorption than PS-Se and suitable electronic energy levels for the application as polymer acceptors in the all-PSCs with PBDB-T as polymer donor. Cryogenic transmission electron microscopy visualizes the aggregation behavior of the PBDB-T donor and the PSMA in their solutions. In addition, a bicontinuous-interpenetrating network in the PBDB-T:PN-Se blend film with aggregation size of 10~20 nm is clearly observed by the photoinduced force microscopy. The desirable morphology of the PBDB-T:PN-Se active layer leads its all-PSC showing higher power conversion efficiency of 16.16%.

6.
Sci Rep ; 9(1): 17064, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745165

RESUMO

The reduced-tillage (Rt) has been proposed as a strategy to improve soil organic carbon and soil total nitrogen pools. However, little is known of the role of the reduced-tillage compared with the organic (Org) and conventional (Con) management in the Songnen Plain of China. We studied the 4 yr effect of three management strategies (Con, Org and Rt management) on labile soil organic carbon (C) and nitrogen (N) pools, including variation in mineralizable carbon and nitrogen, microbial biomass carbon and nitrogen, dissolved organic carbon and nitrogen in the rotation of alfalfa-corn established in 2009. Soil characteristics including soil organic carbon (SOC), soil total nitrogen (STN), dissolved organic carbon (DOC), dissolved organic nitrogen (DON), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN) were quantified in samples collected during the 9 yr rotation of 5yr-alfalfa (Medicago sativa L.) followed by 4 yr corn (Zea mays L.). The mineralizable C was increased in the four years, and although not statistically significant, 12% higher in the fourth year under reduced-tillage than conventional management (268 kg ha-1). Soil organic C was increased by 30% under reduced-tillage compared to conventional management (15.5 Mg ha-1). Three management strategies showed similar labile N pools in the Con and Org management, but differed in the Rt management. Org management showed significantly lesser mineralizable and inorganic N compared to other strategies, but soil microbial community and comparable crop yield across management strategy in year 4, indicating more efficient N use for organic than other management strategy. In our conditions, reduced-tillage for corn cropping after five years of alfalfa grassland can accumulate labile C and N and improve N utilization to for crop yields in the forage-based rotations. These findings suggest an optimal strategy for using Rt management to enhance soil properties and crop yield in plantation soils and provide a new perspective for understanding the potential role of Rt management in plantation soil.

7.
Nanoscale ; 10(26): 12788-12796, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29947397

RESUMO

Organelles play crucial roles in cellular activities and the functions of organelles are related greatly to the pH values, therefore, the bio-imaging of targeted organelles and their related pH sensing is of great importance in biological assays. Herein we report the fluorescence imaging of specific organelles, i.e., lysosomes and endoplasmic reticulum, and their pH sensing with surface regulated carbon dots (CDs). Carbon dots functionalized with amine groups (ACDs) are first prepared by hydrothermal treatment of citric acid and urea, and then laurylamine functionalized CDs (LCDs) are obtained via the conjugation of laurylamine with ACDs. The as-prepared ACDs and LCDs provide clear and bright imaging results for the lysosome and endoplasmic reticulum, respectively. The subcellular targeting features of the two CDs are attributed to their surface chemistries and cellular uptake pathways. Moreover, both the CDs are pH responsive within a certain pH range, i.e., 4.0-5.4 for ACDs and 6.2-7.2 for LCDs. The ACDs and LCDs are thus successfully applied to visualize the pH fluctuations of the lysosome and endoplasmic reticulum in MCF-7 cells.


Assuntos
Carbono , Retículo Endoplasmático , Corantes Fluorescentes , Lisossomos , Aminas , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA