Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2129, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459042

RESUMO

The development of advanced materials capable of autonomous self-healing and mechanical stimulus sensing in aquatic environments holds great promise for applications in underwater soft electronics, underwater robotics, and water-resistant human-machine interfaces. However, achieving superior autonomous self-healing properties and effective sensing simultaneously in an aquatic environment is rarely feasible. Here, we present an ultrafast underwater molecularly engineered self-healing piezo-ionic elastomer inspired by the cephalopod's suckers, which possess self-healing properties and mechanosensitive ion channels. Through strategic engineering of hydrophobic C-F groups, hydrolytic boronate ester bonds, and ions, the material achieves outstanding self-healing efficiencies, with speeds of 94.5% (9.1 µm/min) in air and 89.6% (13.3 µm/min) underwater, coupled with remarkable pressure sensitivity (18.1 kPa-1) for sensing performance. Furthermore, integration of this mechanosensitive device into an underwater submarine for signal transmission and light emitting diode modulation demonstrates its potential for underwater robotics and smarter human-machine interactions.

2.
Nat Commun ; 13(1): 7699, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36509757

RESUMO

The self-healing properties and ionic sensing capabilities of the human skin offer inspiring groundwork for the designs of stretchable iontronic skins. However, from electronic to ionic mechanosensitive skins, simultaneously achieving autonomously superior self-healing properties, superior elasticity, and effective control of ion dynamics in a homogeneous system is rarely feasible. Here, we report a Cl-functionalized iontronic pressure sensitive material (CLiPS), designed via the introduction of Cl-functionalized groups into a polyurethane matrix, which realizes an ultrafast, autonomous self-healing speed (4.3 µm/min), high self-healing efficiency (91% within 60 min), and mechanosensitive piezo-ionic dynamics. This strategy promotes both an excellent elastic recovery (100%) and effective control of ion dynamics because the Cl groups trap the ions in the system via ion-dipole interactions, resulting in excellent pressure sensitivity (7.36 kPa-1) for tactile sensors. The skin-like sensor responds to pressure variations, demonstrating its potential for touch modulation in future wearable electronics and human-machine interfaces.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Íons , Pele , Poliuretanos , Eletrônica
3.
Biomacromolecules ; 22(2): 374-385, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33356173

RESUMO

Polylactic acid (PLA) is a biodegradable thermoplastic polyester produced from natural resources. Because of its brittleness, many tougheners have been developed. However, traditional toughening methods cause either the loss of modulus and strength or the lack of degradability. In this work, we synthesized a biobased and potentially biodegradable poly(butylene 2,5-furandicarboxylate)-b-poly(ethylene glycol) (PBFEG50) copolymer to toughen PLA, with the purpose of both keeping mechanical strength and enhancing the toughness. The blend containing 5 wt % PBFEG50 exhibited about 28.5 times increase in elongation at break (5.5% vs 156.5%). At the same time, the tensile modulus even strikingly increased by 21.6% while the tensile strength was seldom deteriorated. Such a phenomenon could be explained by the stretch-induced crystallization of the BF segment and the interconnected morphology of PBFEG50 domains in PLA5. The Raman spectrum was used to identify the phase dispersion of PLA and PBFEG50 phases. As the PBFEG50 content increased, the interconnected PBFEG50 domains start to separate, but their size increases. Interestingly, tensile-induced cavitation could be clearly identified in scanning electron microscopy images, which meant that the miscibility between PLA and PBFEG50 was limited. The crystallization of PLA/PBFEG50 blends was examined by differential scanning calorimetry, and the plasticizer effect of the EG segment on the PLA matrix could be confirmed. The rheological experiment revealed decreased viscosity of PLA/PBFEG50 blends, implying the possible greener processing. Finally, potential biodegradability of these blends was proved.


Assuntos
Poliésteres , Polietilenoglicóis , Alcenos , Polímeros
4.
ACS Appl Mater Interfaces ; 12(9): 11072-11083, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32043353

RESUMO

A stretchable electronic skin (e-skin) requires a durable elastomeric matrix to serve in various conditions. Therefore, excellent and balanced properties such as elasticity, water proof capability, toughness, and self-healing are demanded. However, it is very difficult and often contradictory to optimize them at one time. Here, a polyurethane (BS-PU-3) containing a polydisperse hard segment, hydrophobic soft segment, and a dynamic disulfide bond was prepared by one-pot synthesis. Unlike the normal two-pot reaction, BS-PU-3 obtained through the one-pot method owned a higher density of self-healing points along the main chain and a faster self-healing speed, which reached 1.11 µm/min in a cut-through sample and recovered more than 93% of virgin mechanical properties in 6 h at room temperature. Moreover, a remarkable toughness of 27.5 MJ/m3 assures its durability as an e-skin matrix. Even with a 1 mm notch (half of the total width) on a standard dumbbell specimen, it could still bear the tensile strain up to 324% without any crack propagation. With polybutadiene as the soft segment, the shape, microstructure, and conductivity in BS-PU-3 and BS-PU-3-based stretchable electronics kept very stable after soaking in water for 3 days, proving the super waterproof property. An e-skin demo was constructed, and self-healing in pressure sensitivity, mechanical, and electrical properties were verified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA