Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Immunol ; 11: 1836, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983097

RESUMO

Examining CD8+ and CD4+ T cell responses after primary Yellow Fever vaccination in a cohort of 210 volunteers, we have identified and tetramer-validated 92 CD8+ and 50 CD4+ T cell epitopes, many inducing strong and prevalent (i.e., immunodominant) T cell responses. Restricted by 40 and 14 HLA-class I and II allotypes, respectively, these responses have wide population coverage and might be of considerable academic, diagnostic and therapeutic interest. The broad coverage of epitopes and HLA overcame the otherwise confounding effects of HLA diversity and non-HLA background providing the first evidence of T cell immunodomination in humans. Also, double-staining of CD4+ T cells with tetramers representing the same HLA-binding core, albeit with different flanking regions, demonstrated an extensive diversification of the specificities of many CD4+ T cell responses. We suggest that this could reduce the risk of pathogen escape, and that multi-tetramer staining is required to reveal the true magnitude and diversity of CD4+ T cell responses. Our T cell epitope discovery approach uses a combination of (1) overlapping peptides representing the entire Yellow Fever virus proteome to search for peptides containing CD4+ and/or CD8+ T cell epitopes, (2) predictors of peptide-HLA binding to suggest epitopes and their restricting HLA allotypes, (3) generation of peptide-HLA tetramers to identify T cell epitopes, and (4) analysis of ex vivo T cell responses to validate the same. This approach is systematic, exhaustive, and can be done in any individual of any HLA haplotype. It is all-inclusive in the sense that it includes all protein antigens and peptide epitopes, and encompasses both CD4+ and CD8+ T cell epitopes. It is efficient and, importantly, reduces the false discovery rate. The unbiased nature of the T cell epitope discovery approach presented here should support the refinement of future peptide-HLA class I and II predictors and tetramer technologies, which eventually should cover all HLA class I and II isotypes. We believe that future investigations of emerging pathogens (e.g., SARS-CoV-2) should include population-wide T cell epitope discovery using blood samples from patients, convalescents and/or long-term survivors, who might all hold important information on T cell epitopes and responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Vacinação , Vacina contra Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Vírus da Febre Amarela/imunologia , Betacoronavirus/imunologia , COVID-19 , Estudos de Coortes , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Voluntários Saudáveis , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunogenicidade da Vacina , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/virologia , SARS-CoV-2 , Febre Amarela/virologia
2.
Sci Rep ; 7(1): 662, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28386132

RESUMO

Outbreaks of Yellow Fever occur regularly in endemic areas of Africa and South America frequently leading to mass vaccination campaigns straining the availability of the attenuated Yellow Fever vaccine, YF-17D. The WHO has recently decided to discontinue regular booster-vaccinations since a single vaccination is deemed to confer life-long immune protection. Here, we have examined humoral (neutralizing antibody) and cellular (CD8 and CD4 T cell) immune responses in primary and booster vaccinees (the latter spanning 8 to 36 years after primary vaccination). After primary vaccination, we observed strong cellular immune responses with T cell activation peaking ≈2 weeks and subsiding to background levels ≈ 4 weeks post-vaccination. The number of antigen-specific CD8+ T cells declined over the following years. In >90% of vaccinees, in vitro expandable T cells could still be detected >10 years post-vaccination. Although most vaccinees responded to a booster vaccination, both the humoral and cellular immune responses observed following booster vaccination were strikingly reduced compared to primary responses. This suggests that pre-existing immunity efficiently controls booster inoculums of YF-17D. In a situation with epidemic outbreaks, one could argue that a more efficient use of a limited supply of the vaccine would be to focus on primary vaccinations.


Assuntos
Imunidade Adaptativa , Imunização Secundária , Vacinação , Vacina contra Febre Amarela/imunologia , Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Vírus da Febre Amarela/imunologia , Adolescente , Adulto , Idoso , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Dinamarca , Feminino , Voluntários Saudáveis , Humanos , Ativação Linfocitária , Masculino , Camundongos , Pessoa de Meia-Idade , Vigilância em Saúde Pública , Febre Amarela/metabolismo , Adulto Jovem
3.
PLoS Negl Trop Dis ; 10(2): e0004464, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26886513

RESUMO

The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.


Assuntos
Antígenos Virais/imunologia , Vacina contra Febre Amarela/imunologia , Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/administração & dosagem , Antígenos Virais/genética , Linfócitos T CD8-Positivos/imunologia , Feminino , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Vacinação , Proteínas Virais/administração & dosagem , Proteínas Virais/genética , Proteínas Virais/imunologia , Febre Amarela/prevenção & controle , Febre Amarela/virologia , Vacina contra Febre Amarela/administração & dosagem , Vacina contra Febre Amarela/genética , Vírus da Febre Amarela/genética
4.
J Immunol ; 194(3): 1141-53, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25539816

RESUMO

The attenuated yellow fever (YF) vaccine (YF-17D) was developed in the 1930s, yet little is known about the protective mechanisms underlying its efficiency. In this study, we analyzed the relative contribution of cell-mediated and humoral immunity to the vaccine-induced protection in a murine model of YF-17D infection. Using different strains of knockout mice, we found that CD4(+) T cells, B cells, and Abs are required for full clinical protection of vaccinated mice, whereas CD8(+) T cells are dispensable for long-term survival after intracerebral challenge. However, by analyzing the immune response inside the infected CNS, we observed an accelerated T cell influx into the brain after intracerebral challenge of vaccinated mice, and this T cell recruitment correlated with improved virus control in the brain. Using mice deficient in B cells we found that, in the absence of Abs, YF vaccination can still induce some antiviral protection, and in vivo depletion of CD8(+) T cells from these animals revealed a pivotal role for CD8(+) T cells in controlling virus replication in the absence of a humoral response. Finally, we demonstrated that effector CD8(+) T cells also contribute to viral control in the presence of circulating YF-specific Abs. To our knowledge, this is the first time that YF-specific CD8(+) T cells have been demonstrated to possess antiviral activity in vivo.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Imunidade Adaptativa , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Ligante de CD40/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Feminino , Imunização Passiva , Depleção Linfocítica , Camundongos , Camundongos Knockout , Vacinação , Replicação Viral , Febre Amarela/genética , Febre Amarela/mortalidade , Febre Amarela/prevenção & controle , Vacina contra Febre Amarela/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA