Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Mol Ther Oncol ; 32(2): 200805, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38745750

RESUMO

Chondrosarcoma (CS) is a malignant cartilage-forming bone tumor that is inherently resistant to chemotherapy and radiotherapy, leaving surgery as the only treatment option. We have designed a tumor-targeted bacteriophage (phage)-derived particle (PDP), for targeted systemic delivery of cytokine-encoding transgenes to solid tumors. Phage has no intrinsic tropism for mammalian cells; therefore, it was engineered to display a double cyclic RGD4C ligand on the capsid to target tumors. To induce cancer cell death, we constructed a transgene cassette expressing a secreted form of the cytokine tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). We detected high expression of αvß3 and αvß5 integrin receptors of the RGD4C ligand, and of the TRAIL receptor-2 in human CS cells (SW1353), but not in primary normal chondrocytes. The RGD4C.PDP-Luc particle carrying a luciferase reporter gene, Luc, effectively and selectively mediated gene delivery to SW1353 cells, but not primary chondrocytes. Transduction of SW1353 cells with RGD4C.PDP-sTRAIL encoding a human sTRAIL, resulted in the expression of TRAIL and subsequent cell death without harming the normal chondrocytes. Intravenous administration of RGD4C.PDP-sTRAIL to mice with established human CS resulted in a decrease in tumor size and tumor viability. Altogether, RGD4C.PDP-sTRAIL can be used to target systemic treatment of CS with the sTRAIL.

2.
Nanoscale ; 16(13): 6603-6617, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38470366

RESUMO

The TRAIL (Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand) is a promising candidate for cancer treatment due to its unique ability to selectively induce programmed cell death, or apoptosis, in cancer cells while sparing healthy ones. This selectivity arises from the preferential binding of the TRAIL to death receptors on cancer cells, triggering a cascade of events that lead to their demise. However, significant limitations in using the TRAIL for cancer treatment are the administration of the TRAIL protein that can potentially lead to tissue toxicity (off-target) and the short half-life of the TRAIL in the body which may necessitate frequent and sustained administration; these can pose logistical challenges for long-term treatment regimens. We have devised a novel approach for surmounting these limitations by introducing the TRAIL gene directly into cancer cells, enabling them to produce the TRAIL locally and subsequently trigger apoptosis. A novel gene delivery system such as a bacteriophage-based particle TPA (transmorphic phage/AAV) was utilized to address these limitations. TPA is a hybrid M13 filamentous bacteriophage particle encapsulating a therapeutic gene cassette with inverted terminal repeats (ITRs) from adeno-associated viruses (AAVs). The particle also showed a tumour targeting ligand, CDCRGDCFC (RGD4C), on its capsid (RGD4C.TPA) to target the particle to cancer cells. RGD4C selectively binds to αvß3 and αvß5 integrins overexpressed on the surface of most of the cancer cells but is barely present on normal cells. Hepatocellular carcinoma (HCC) was chosen as a model because it has one of the lowest survival rates among cancers. We demonstrated that human HCC cell lines (Huh-7 and HepG2) express αvß5 integrin receptors on their surface. These HCC cells also express death receptors and TRAIL-binding receptors. We showed that the targeted TPA particle carrying the transmembrane TRAIL gene (RGD4C.TPA-tmTRAIL) selectively and efficiently delivered the tmTRAIL gene to HCC cells resulting in the production of tmTRAIL from transduced cells and subsequently induced apoptotic death of HCC cells. This tumour-targeted particle can be an excellent candidate for the targeted gene therapy of HCC.


Assuntos
Bacteriófagos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Apoptose , Bacteriófagos/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Ligantes , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Terapia Genética/métodos
3.
Heliyon ; 9(8): e18755, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576204

RESUMO

Houttuynia cordata Thunb. (HCT) is a perennial plant used in traditional Thai medicine for many centuries. This study aimed to investigate the antiproliferative effect of the hexane fraction, which has not been explored before. HCT ethanol extract (crude extract) was sequentially fractionated to obtain a hexane (H) fraction. GC-MS was used to determine the phytochemicals. The H fraction consisted of lipids, mainly α-linolenic acid and some terpenoids. MTT assay was used to determine the cytotoxic effects of H fraction in MCF-7, MDA-MB-231, NIH3T3 and PBMCs. The mode of cell death and cell cycle analysis were determined by flow cytometry. The mechanisms of cell death were defined by mitochondrial transmembrane potential (MTP) reduction and activation of caspase-3, -8 and -9. The expression levels of the Bcl-2 family, cell cycle-related, endoplasmic reticulum (ER) stress-associated proteins; and Akt/ERK signaling molecules were investigated by immunoblotting. The H fraction was toxic to MDA-MB-231 more than MCF-7 cells but not to NIH3T3 and PBMCs. The growth of MDA-MB-231 cells was inhibited through apoptosis. MTP was disrupted whereas caspase-3, -8 and -9 were activated. The expression of pro-apoptotic Bax and Bak was upregulated, while Bid and anti-apoptotic Bcl-xL proteins were downregulated. Cyclin D1 and CDK4 levels were downregulated. The cell cycle was arrested at G1. Moreover, GRP78 and CHOP elevation indicated ER stress-mediated pathway. The expression ratio of pAkt/Akt and pERK/ERK were reduced. Taken together, the molecular mechanisms of MDA-MB-231 cell apoptosis were via intrinsic/extrinsic pathways, cell cycle arrest, ER stress and abrogation of Akt/ERK survival pathways. According to the most current research, the H fraction may be used as an adjuvant in the BC treatment; however, before the anticancer strategy can be applied to patients, it is important to determine each active compound's effects in cell lines and in vivo when compared with a combined mixture.

4.
PLoS One ; 18(6): e0287694, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384719

RESUMO

Hepatitis C virus (HCV) is a viral pathogen that causes chronic hepatitis, which can lead to cirrhosis and hepatocellular carcinoma. Detection of HCV RNA is the standard method used to diagnose the disease and monitor antiviral treatment. A quantification assay for the HCV core antigen (HCVcAg) has been proposed as a simplified alternative to the HCV RNA test for predicting active HCV infection, with the aim of achieving the global goal of eliminating hepatitis. The objective of this study was to determine the correlation between HCV RNA and HCVcAg, as well as the impact of amino acid sequence heterogeneity on HCVcAg quantification. Our findings demonstrated a strong positive correlation between HCV RNA and HCVcAg across all HCV genotypes (1a, 1b, 3a, and 6), with correlation coefficients ranging from 0.88 to 0.96 (p < 0.001). However, in some cases, samples with genotypes 3a and 6 exhibited lower HCVcAg levels than expected based on the corresponding HCV RNA values. Upon the core amino acid sequence alignment, it was observed that samples exhibiting low core antigen levels had an amino acid substitution at position 49, where threonine was replaced by either alanine or valine. Core mutation at this position may correlate with one of the epitope regions recognized by anti-HCV monoclonal antibodies. The present findings suggest that the utilization of HCVcAg as a standalone marker for HCV RNA might not provide adequate sensitivity for the detection of HCV infection, especially in cases where there are variations in the amino acid sequence of the core region and a low viral load of HCV RNA.


Assuntos
Hepatite C , Neoplasias Hepáticas , Humanos , Hepacivirus/genética , Substituição de Aminoácidos , Hepatite C/diagnóstico , Antígenos da Hepatite C/genética , Anticorpos Anti-Hepatite C , RNA
5.
Carbohydr Res ; 529: 108832, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37192581

RESUMO

Heparin-like sulfated polysaccharide, acharan sulfate, was purified from the mucus of an African giant snail with unique sulfated glycosaminoglycans (GAGs). This study reported on finding novel and safe heparin resources from Achatina fulica for further use as well as easy isolation and purification of the active fraction from the initial raw material. Its structure was characterised by a strong-anion exchange combined with high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy. The results indicated that the potential acharan sulfate fraction is a glycosaminoglycan composed of several repeating disaccharide units, namely, of →4)-α-IdoA(2S)(1→4)-α-GlcNAc/GlcNAc(6S)/GlcNSO3(6S)(1→, and hence, presents heterogeneity regarding negative net charge density. Furthermore, the heparinase digests inhibit the binding of SARS-CoV-2 spike protein to the ACE2 receptor. In summary, the acharan sulfate presented in this work has shown its great potential for application in the preparation of sulfated polysaccharides as an alternative to heparin with important biological activity.


Assuntos
COVID-19 , Heparina , Animais , Humanos , Heparina/química , Sulfatos , SARS-CoV-2 , Glicosaminoglicanos/farmacologia , Glicosaminoglicanos/química , Polissacarídeos/química , Caramujos/química , Caramujos/metabolismo , Muco/metabolismo
6.
Asian Pac J Cancer Prev ; 24(4): 1265-1274, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116149

RESUMO

BACKGROUND: Houttuynia cordata Thunb (HCT) is a medicinal herb used in Southeast Asia. Aim of this work: This study aimed at investigating the cytotoxicity of this plant extract and fractions towards human breast cancer MDA-MB-231 and MCF-7 cells. HCT's phytoactive compounds are determined. MATERIALS AND METHODS: Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The mode of cell death was measured by staining with annexin V-FITC and propidium iodide (PI) employing flow cytometry technique. The oxidative stress was measured by using 2',7'-dihydrodichlorofluorescein diacetate (DCFH-DA) and dihydroethidium (DHE+) fluorescent probes and using a fluorescence microplate reader. HCT phytochemicals were characterized by high performance liquid chromatography (HPLC). RESULTS: The proliferation of MDA-MB-231 and MCF-7 cells was dramatically decreased by the crude extract and individual fraction of HCT. Ethyl acetate was the solvent fraction with the highest toxicity against MCF-7 cells, followed by dichloromethane, crude, and hexane fractions, respectively, whereas in MDA-MB231 cells, dichloromethane, crude, hexane, and ethyl acetate fractions each had the strongest impact, respectively. The methanol fraction had no effect on either cell line up to 200 µg/ml. The extract and fractions were less harmful to the NIH3T3 normal murine fibroblast cell line. The mode of both cell death was apoptosis evidenced by the increase of cell population stained with annexin V-FITC and PI. The fluorescence probes of both DCFH-DA and DHE in MDA-MB-231 cell line were enhanced. Phenolic acids included chlorogenic acid (CA), gallic acid (GA), transcoumaric acid (TCA), vanillic acid (VA), and syringic acid (SA), as well as flavonoids like quercetin and rutin, were identified as the active phytochemicals in the crude and fractions by using HPLC method. CONCLUSION: MDA-MB-231cells underwent apoptosis via oxidative stress when induced with HCT hexane fraction. Phenolic acids and flavonoids were identified in HCT's extract and fractions.


Assuntos
Neoplasias da Mama , Houttuynia , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Houttuynia/química , Hexanos/farmacologia , Linhagem Celular Tumoral , Cloreto de Metileno/farmacologia , Células NIH 3T3 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Apoptose , Flavonoides/farmacologia , Compostos Fitoquímicos/farmacologia
7.
Int Immunopharmacol ; 118: 109988, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933493

RESUMO

Triple-negative breast cancer (TNBC) exhibits high levels of Epithelial-mesenchymal transition (EMT) and Programmed death ligand 1 (PD-L1) expression, which promotes immune escape and metastasis. Brazilein is a natural compound extracted from Caesalpinia sappan L., and has been demonstrated to be an anti-inflammatory anti- proliferative and apoptosis-inducer in various cancer cells. Here, we investigated the effect of brazilein on EMT and PD-L1 expression in breast cancer cells and its related molecular mechanisms using MCF-7 and MDA-MB-231 cells as a model. Since the AKT, NF-κB, and GSK3ß/ß-catenin signaling were reported to be important mechanisms in immune escape and metastasis, the effect of brazilein on these signaling pathways were also found out in our study. Firstly, brazilein was treated on breast cancer cells at various concentrations to study cell viability, apoptosis, and apoptosis proteins. Then, breast cancer cells were treated with non-toxic concentrations of brazilein to study its influence on EMT and expression of PD-L1 protein using MTT, flow cytometry, western blot, and wound healing analysis, respectively. We found that brazilein exerts an anti-cancer effect by reducing cell viability via induction of apoptosis, while it also downregulated EMT and PD-L1 through suppression of phosphorylation of AKT, NF-κB, and GSK3ß/ß-catenin. Moreover, the migration ability was diminished by inhibiting the activation of MMP-9 and MMP-2. Taken together, brazilein might delay cancer progression through inhibition of EMT, PD-L1, and metastasis suggesting it might be a potential therapeutic option in breast cancer patients having a high level of EMT and PD-L1.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , beta Catenina/metabolismo , Antígeno B7-H1/metabolismo , Neoplasias da Mama/patologia , NF-kappa B/metabolismo , Glicogênio Sintase Quinase 3 beta , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Neoplasias de Mama Triplo Negativas/patologia , Movimento Celular
8.
Sci Rep ; 13(1): 2338, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759556

RESUMO

The fate of osteoprogenitor cells along with the progression of type 2 diabetes (T2DM) and factors determining the fate of those cells remains to be elucidated. This cross-sectional study included 18 normoglycemic, 27 prediabetic, and 73 T2DM to determine osteogenic differentiation across the continuum of dysglycemia and to construct a model to predict the fate of osteoprogenitor cells. This study demonstrated a preserved osteogenic differentiation ability of peripheral blood-derived mononuclear cells (PBMC) isolated from normoglycemic and prediabetic but a progressive decline in their osteogenic differentiation during the progression of T2DM. The rate of osteogenic differentiation rapidly declined by 4-7% annually during the first 10 years of diabetes and then slowed down. A predictive model composed of three independent risk factors, including age, duration of diabetes, and glomerular filtration rate, demonstrated an AuROC of 0.834. With a proposed cut-off of 21.25, this model had 72.0% sensitivity, 87.5% specificity, and 78.9% accuracy in predicting the fate of osteoprogenitor cells. In conclusion, this study provided a perspective on the osteogenic differentiation ability of the osteoprogenitor cells across a continuum of dysglycemia and a predictive model with good diagnostic performance for the prediction of the fate of osteoprogenitor cells in patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Humanos , Osteogênese , Estudos Transversais , Leucócitos Mononucleares , Diferenciação Celular , Células-Tronco , Osteoblastos
9.
Biomedicines ; 11(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672695

RESUMO

Sesamin, a major phytochemical in sesame seeds and oil, has been reported to have effects on physiological and pathological angiogenesis in several studies. Nevertheless, the underlying mechanisms of sesamin's effect on angiogenesis are not understood well enough. This study aimed to investigate its effect on both physiological and pathological angiogenesis using the in vivo chick chorioallantoic membrane (CAM) model and the in vitro human endothelial cell line, EA.hy926, model. Sesamin inhibited the VEGFA-induced pathological angiogenesis significantly, although no effect was seen on angiogenesis without induction. It reduced the formation of vascular branches in the VEGFA-treated CAMs and also the proliferation and migration of EA.hy926 endothelial cells induced by VEGFA. Sesamin impeded the VEGF-mediated activation of Src and FAK signaling proteins, which may be responsible for sesamin-mediated reduction of pathological angiogenesis. Moreover, the effect of sesamin on the expressions of angiogenesis-related genes was then investigated and it was found that both mRNA and protein expressions of Notch1, the key pathway in vascular development, induced by VEGFA, were significantly reduced by sesamin. Our results altogether suggested that sesamin, by inhibiting pathological angiogenesis, has the potential to be employed in the prevention or treatment of diseases with over-angiogenesis, such as cancers.

10.
PLoS One ; 17(11): e0277745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36395151

RESUMO

The COVID-19 pandemic caused by a virus that can be transmitted from human to human via air droplets has changed the quality of life and economic systems all over the world. The viral DNA has mutated naturally over time leading to the diversity of coronavirus victims which has posed a serious threat to human security on a massive scale. The current variants have developed in a dominant way and are considered "Variants of Concern" by the World Health Organization (WHO). In this work, Kappa (B.1.617.1), Delta (B.1.617.2), and Omicron (B.1.1.529) variants were obtained to evaluate whether naturally occurring mutations have strengthened viral infectivity. We apply reliable in silico structural dynamics and energetic frameworks of the mutated S-RBD protein for ACE2-binding to analyze and compare the structural information related to the wild-type. In particular, the hotspot residues at Q493, Q498, and N501 on the S-RBD protein were determined as contributing factors to the employment stability of the relevant binding interface. The L452R mutation induces an increment of the hydrogen bonds formed by changing the Q493 environment for ACE2 binding. Moreover, the Q493K exchange in Omicron enables the formation of two additional salt bridges, leading to a strong binding affinity by increased electrostatic interaction energy. These results could be used in proposing concrete informative data for a structure-based design engaged in finding better therapeutics against novel variants.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/genética , Simulação de Dinâmica Molecular , Pandemias , Qualidade de Vida
11.
Sci Rep ; 12(1): 11296, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788665

RESUMO

Diabetes mellitus (DM), one of the principal causes of morbidity and mortality worldwide, is implicated in the progression of age-related neurodegenerative diseases (NDDs), in which microglial activation is a crucial mediator. Sesamin, a kind of phytochemical, shows inhibitory effects on microglial activation. The present study studied whether sesamin protects against neurotoxicity triggered by high glucose-induced microglial activation. We firstly demonstrated that high doses of glucose, which mimics hyperglycemia in DM, did induce the activation of murine BV2 microglial cells, increasing inflammatory responses such as the production of ROS or inflammatory mediators like IL-1ß, TNF-⍺, and nitric oxide, through activation of p38 and JNK signaling pathways. Next, conditioned medium (CM) collected from high glucose-activated BV2 cell culture was used to show aggravated neurotoxicity in differentiated PC12 cells, indicating that high glucose-activated microglia could induce neurotoxicity. Interestingly, pretreatment of BV2 cells with sesamin diminished high glucose-induced microglia activation and inflammatory responses. Moreover, neurotoxicity in PC12 cells was found to be decreased in the group treated with CM from the sesamin-pretreated BV2 cell culture, suggesting sesamin inhibited microglial activation, thereby protecting neurons from activated microglia-mediated neurotoxicity. Thus, sesamin might be a potential compound to use in the prevention of diabetic-induced NDDs.


Assuntos
Microglia , Síndromes Neurotóxicas , Animais , Meios de Cultivo Condicionados , Dioxóis/farmacologia , Glucose/toxicidade , Lignanas , Sistema de Sinalização das MAP Quinases , Camundongos , Ratos
12.
EMBO Mol Med ; 14(8): e15418, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35758207

RESUMO

Immunotherapy is a powerful tool for cancer treatment, but the pleiotropic nature of cytokines and immunological agents strongly limits clinical translation and safety. To address this unmet need, we designed and characterised a systemically targeted cytokine gene delivery system through transmorphic encapsidation of human recombinant adeno-associated virus DNA using coat proteins from a tumour-targeted bacteriophage (phage). We show that Transmorphic Phage/AAV (TPA) particles provide superior delivery of transgenes over current phage-derived vectors through greater diffusion across the extracellular space and improved intracellular trafficking. We used TPA to target the delivery of cytokine-encoding transgenes for interleukin-12 (IL12), and novel isoforms of IL15 and tumour necrosis factor alpha (TNF α ) for tumour immunotherapy. Our results demonstrate selective and efficient gene delivery and immunotherapy against solid tumours in vivo, without harming healthy organs. Our transmorphic particle system provides a promising modality for safe and effective gene delivery, and cancer immunotherapies through cross-species complementation of two commonly used viruses.


Assuntos
Bacteriófagos , Neoplasias , Bacteriófagos/genética , Citocinas/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Transgenes
13.
Biology (Basel) ; 11(5)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35625426

RESUMO

A liquid biopsy is currently an interesting tool for measuring tumor material with the advantage of being non-invasive. The overexpression of vimentin and ezrin genes was associated with epithelial-mesenchymal transition (EMT), a key process in metastasis and progression in osteosarcoma (OS). In this study, we identified other OS-specific genes by calculating differential gene expression using the Gene Expression Omnibus (GEO) database, confirmed by using quantitative reverse transcription-PCR (qRT-PCR) to detect OS-specific genes, including VIM and ezrin in the buffy coat, which were obtained from the whole blood of OS patients and healthy donors. Furthermore, the diagnostic model for OS detection was generated by utilizing binary logistic regression with a multivariable fractional polynomial (MFP) algorithm. The model incorporating VIM, ezrin, and COL5A2 genes exhibited outstanding discriminative ability, as determined by the receiver operating characteristic curve (AUC = 0.9805, 95% CI 0.9603, 1.000). At the probability cut-off value of 0.3366, the sensitivity and the specificity of the model for detecting OS were 98.63% (95% CI 90.5, 99.7) and 94.94% (95% CI 87.5, 98.6), respectively. Bioinformatic analysis and qRT-PCR, in our study, identified three candidate genes that are potential diagnostic and prognostic genes for OS.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35598193

RESUMO

BACKGROUND: Assembly and budding in the late-stage of human immunodeficiency virus type 1 (HIV-1) production rely on Gag protein polymerization at the inner leaflet of the plasma membrane. We previously generated a monomeric ankyrin repeat protein (Ank1D4) that specifically interacts with capsid protein (CAp24) of HIV-1, however this protein had modest binding affinity. OBJECTIVE: This study aimed to improve the avidity of Ank1D4 by generating two Ank1D4 dimers: (Ank1D4NC-NC) and its inverted form (Ank1D4NC-CN), with each domain connected by a flexible (G4S)4 linker peptide. METHODS: Binding properties of monomeric and dimeric Ank1D4 was performed by capture enzyme-linked immunosorbent assay (ELISA). Sandwich ELISA was used to examine bifunctional module of dimeric Ank1D4. Ank1D4NC-NC and Ank1D4NC-CN were evaluated using bio-layer interferometry (BLI), compared to monomeric Ank1D4. RESULTS: Similar binding surfaces were observed in both dimers which was comparable with monomeric Ank1D4. The interaction of Ank1D4NC-CN with CAp24 was significantly greater than that of Ank1D4NC-NC and Ank1D4 by capture ELISA. Ank1D4NC-CN also exhibited bifunctionality using a sandwich ELISA. The KD of Ank1D4NC-CN, Ank1D4NC-NC and monomeric Ank1D4 was 3.5 nM, 53.7 nM, and 126.2 nM, respectively using bio-layer interferometry analysis. CONCLUSIONS: This study provides a strategy for increasing Ank1D4 avidity through the construction of novel inverted dimers with a flexible linker. Ank1D4NC-CN may provide an alternative treatment strategy for inhibiting HIV-1 replication.

15.
Sci Rep ; 12(1): 5896, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393512

RESUMO

The COVID-19 pandemic has changed the quality of life and economic systems all over the world, as the virus can be transmitted from human to human via air-droplets. Since the SARS-CoV-2 virus was first identified in 2019, the virus has naturally mutated over time. Southeast Asia is one of the areas in the world that has implemented various procedures and measures to slow down the disease outbreaks. The first cluster of COVID-19 was identified from the tourist-travel history, and then the diversity of coronavirus victims has posed a serious issue of human security on a massive scale. To evaluate whether or not naturally occurring mutations have strengthened the infectivity of SARS-CoV-2, we computed in silico the structural dynamics of the RBD-spike protein mutation enhancing ACE2-binding. When considering emerging variations in Southeast Asia, 14 dominant mutations were analyzed by applying the structural and energetic characterization using MD simulations. The ones in the RBD region displayed higher affinity to ACE2 due to the improved interfacial stability of the RBD ß-strand surrounding the ACE2 across salt bridge hotspots. The binding hotspots and structurally conserved conformational-epitopes have been identified, which are deleterious for RBD mutation and ACE2 binding. We present an interactive visualization to facilitate the development of effective neutralizing agents for vaccination, prevention and treatment.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/genética , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular , Mutação , Pandemias , Ligação Proteica , Qualidade de Vida , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
16.
Cells ; 11(6)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326493

RESUMO

The expression of programmed cell death ligand 1 (PD-L1) in tumors is associated with tumor cell escape from T-cell cytotoxicity, and is considered a crucial effector in chemoresistance and tumor relapse. Although PD-L1 induction has been observed in patients after chemotherapy treatment, the mechanism by which the drug activates PD-L1 expression remains elusive. Here, we identified the extracellular vesicles (EVs) as a molecular mediator that determines the effect of doxorubicin on PD-L1 expression in osteosarcoma models. Mechanistically, doxorubicin dependently stimulates the release of extracellular vesicles, which mediate autocrine/paracrine signals in osteosarcoma cells. The recipient cells were stimulated by these EVs and acquired the ability to promote the expression of inflammatory cytokines interleukin (IL)-1ß and IL-6. In response to doxorubicin, IL-1ß, but not IL-6, allowed- osteosarcoma cells to promote the expression of PD-L1, and the elimination of IL-1ß/IL-1 receptor signaling with IL-1 receptor antagonist reduced PD-L1 expression. Together, these findings provided insights into the role of EV release in response to chemotherapy that mediates PD-L1 expression via the IL-1 signaling pathway, and suggested that the combination of a drug targeting IL-1 or PD-L1 with chemotherapy could be an effective treatment option for osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Vesículas Extracelulares , Osteossarcoma , Antígeno B7-H1/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Vesículas Extracelulares/metabolismo , Humanos , Interleucina-1/metabolismo , Recidiva Local de Neoplasia/metabolismo , Osteossarcoma/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais
17.
Front Endocrinol (Lausanne) ; 13: 799872, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237235

RESUMO

Type 2 diabetes is widely documented for osteogenic differentiation defect and impaired bone quality, which is related to the skeletal accumulation of advanced glycation end products (AGEs). Prediabetes is a condition in which hyperglycemia is lower than the threshold for the diagnosis of diabetes. Prediabetic animal models consistently demonstrate impaired osteogenic differentiation and deteriorated bone microarchitecture. However, no evidence shows defects in osteoblast development and skeletal effects of AGEs in prediabetic individuals. Therefore, it remains to be elucidated whether impaired osteogenic differentiation ability and altered cellular response to AGEs occur in patients with prediabetes. This cross-sectional study included 28 patients with prediabetes as defined by impaired fasting glucose criteria, fasting plasma glucose (FPG) between 100-125 mg/dl and 17 age-matched normoglycemic controls to elucidate osteogenic differentiation and AGER expression in the PBMC derived from those individuals. The PBMC-isolated from both groups showed similar rates of expression of osteoblast-specific genes, namely, ALPL, BGLAP, COL1A1, and RUNX2/PPAR (89.3% and 88.2%, p = 1.000), and showed comparable levels of expression of those genes. By using age- and pentosidine-matched normoglycemic individuals as references, the PBMC-isolated from prediabetic patients demonstrated lower expression of both AGER and BAX/BCL2. The expression of AGER and BAX/BCL2 significantly correlated to each other (r = 0.986, p <0.0001). The multivariate analysis demonstrated that serum pentosidine is an independent risk factor for AGER expression. With logistic regression analysis, the area under the ROC curve (AUC) for serum pentosidine at the cut-off level of 2.1 ng/ml and FPG at 100 mg/dl, which is a cut-off point for prediabetes, was significantly higher for predicting AGER expression than that of serum pentosidine alone (0.803 vs 0.688, p = 0.048), indicating that serum pentosidine was a good predictor of AGER expression in prediabetic individuals. In conclusion, this study demonstrated a preserved osteogenic differentiation in the PBMC derived from prediabetic individuals. In addition, those PBMC with preserved osteogenic differentiation potential showed the suppression of both cellular RAGE and apoptotic-related signals. Serum pentosidine was an independent risk factor for cellular RAGE expression and is conceivably a good predictor for AGER suppression in prediabetic individuals.


Assuntos
Produtos Finais de Glicação Avançada , Osteogênese , Estado Pré-Diabético , Receptor para Produtos Finais de Glicação Avançada , Estudos Transversais , Diabetes Mellitus Tipo 2 , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Estado Pré-Diabético/diagnóstico , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteína X Associada a bcl-2
18.
Viruses ; 13(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34960616

RESUMO

Osteoarthritis (OA) is a degenerative joint disease characterized by progressive deterioration and loss of articular cartilage. There is currently no treatment to reverse the onset of OA. Thus, we developed a targeted delivery strategy to transfer genes into primary human chondrocytes as a proof-of-concept study. We displayed a chondrocyte-affinity peptide (CAP) on the pIII minor coat protein of the M13 filamentous bacteriophage (phage)-based particle carrying a mammalian transgene cassette under cytomegalovirus CMV promoter and inverted terminal repeats (ITRs) cis elements of adeno-associated virus serotype 2 (AAV-2). Primary human articular chondrocytes (HACs) were used as an in vitro model, and the selectivity and binding properties of the CAP ligand in relation to the pathogenic conditions of HACs were characterized. We found that the CAP ligand is highly selective toward pathogenic HACs. Furthermore, the stability, cytotoxicity, and gene delivery efficacy of the CAP-displaying phage (CAP.Phage) were evaluated. We found that the phage particle is stable under a wide range of temperatures and pH values, while showing no cytotoxicity to HACs. Importantly, the CAP.Phage particle, carrying a secreted luciferase (Lucia) reporter gene, efficiently and selectively delivered transgene expression to HACs. In summary, it was found that the CAP ligand preferably binds to pathogenic chondrocytes, and the CAP.Phage particle successfully targets and delivers transgene to HACs.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Osteoartrite/terapia , Células Cultivadas , Condrócitos , Técnicas de Transferência de Genes , Genes Reporter , Humanos , Peptídeos , Cultura Primária de Células , Estudo de Prova de Conceito
19.
Pharmaceutics ; 13(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34683980

RESUMO

The combination of natural products is an alternative approach to achieving chemopreventive potential. Accordingly, citrus hesperidin exhibits numerous biological activities, including anticarcinogenic activities, while the sesamin in sesame exhibits potent anticancer activities and lipid-lowering effects. We investigated the cancer chemopreventive effects of mixed sesame and orange seed extract (MSO) containing hesperidin and sesamin in diethylnitrosamine (DEN)-induced hepatocarcinogenesis. Rats were injected with DEN once a week for 3 weeks to induce hepatocarcinogenesis. Rats were fed with MSO and various compositions that included sesame extract (SE) and hesperidin. The 10-week administration of MSO more effectively inhibited the number and size of hepatic GST-P-positive foci than hesperidin in DEN-initiated rats. MSO and hesperidin decreased the number of PCNA-positive hepatocytes but increased the apoptotic cells in DEN-induced rats. Furthermore, MSO and its constituents suppressed hepatic triglyceride content concurrently along with the expression of fatty acid synthase. Although the 5-week administration of MSO or hesperidin did not alter hepatic, preneoplastic lesion formation in DEN-initiated rats, it alleviated DEN-induced hepatotoxicity. MSO and its applied compositions did not impact upon the cytochrome P450 system. In conclusion, sesame extract promoted the chemopreventive effect of hesperidin on DEN-induced early stage of hepatocarcinogenesis in rats. The inhibitory mechanisms are likely involved with the induction of cell apoptosis, suppression of cell proliferation and modulation of hepatic lipogenesis. This study may provide revelations in the development of alternative treatments against hepatocellular carcinoma.

20.
Front Endocrinol (Lausanne) ; 12: 726182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512554

RESUMO

Preclinical studies have found impaired osteogenic differentiation to be associated with type 2 diabetes (T2DM), which is related to skeletal accumulation of advanced glycation end products (AGEs). Our previous study also showed impaired osteogenic differentiation in peripheral blood-derived mononuclear cells (PBMC) isolated from patients with long-standing T2DM, which is conceivably due to the overexpression of receptor of advance glycation end products (RAGE) and the enhancement of cellular apoptosis. However, the existence of RAGE overexpression in earlier stages of diabetes remains unclear, as do the factors influencing that RAGE overexpression. This cross-sectional study enrolled 40 patients with T2DM treated with metformin monotherapy and 30 age-matched non-diabetic controls (NDM) to investigate the overexpression of RAGE in PBMC derived from patients with earlier stage diabetes, as well as to explore its determining factors. Almost all (90%) PBMC-isolated from NDM (NDM-pD) expressed osteoblast-specific genes including ALPL, BGLAP, COL1A1, and RUNX2/PPAR while only 40% of PBMC-derived from diabetic patients (DM-pD) expressed those genes. By using age- and pentosidine-matched NDM-pD as a reference, AGER and BAX/BCL2 expression in PBMC isolated from diabetic patients showing impaired osteoblast-specific gene expression (DM-iD) were 6.6 and 5 folds higher than the reference while AGER and BAX/BCL2 expression in DM-pD were comparable to the reference. AGER expression showed a significant positive correlation with age (r=0.470, p=0.003). The multivariate analysis demonstrated that both age and AGER expression correlated with the potential for osteogenic differentiation in the PBMC isolated from patients with diabetes. In conclusion, this study showed osteogenic differentiation impairment in approximately half of PBMC derived from type 2 diabetic patients receiving metformin monotherapy. Both AGER and BAX/BCL2 overexpression were demonstrated only in PBMC-isolated from diabetic patients with poor osteogenic differentiation. Therefore, this study not only illustrated the existence of RAGE overexpression in PBMC derived from patients with early stages of T2DM but also strengthened the linkage between that RAGE overexpression and the retardation of osteogenic differentiation. Age was also shown to be a positive influencing factor for RAGE overexpression. Furthermore, both age and RAGE overexpression were demonstrated as independent risk factors for determining osteogenic differentiation potential of the PBMC-isolated from T2DM.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Produtos Finais de Glicação Avançada/metabolismo , Leucócitos Mononucleares/patologia , Osteoblastos/patologia , Osteogênese , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fatores Etários , Estudos de Casos e Controles , Estudos Transversais , Feminino , Seguimentos , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA