Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 9: e12031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616600

RESUMO

Several experimental studies on aquatic plants have reported the prevalence of chemical defense mechanism against herbivory, as opposed to structural, life-forms or other traits. Here, our laboratory feeding experiments and integrative analysis explored the relationship among palatability (fresh or reconstituted plants used as artificial diet) and various chemical/nutritional traits (i.e., contents of dry mass, ash, nitrogen, protein, and phenols) of diverse aquatic plants and their susceptibility to consumption by the generalist gastropod Biomphalaria glabrata. Biomphalaria glabrata consumed all of the assayed aquatic plants in a hierarchical yet generalized way, with the consumption of fresh plants, their reconstituted forms and defensive properties of lipophilic extracts not being significantly correlated with plant physical or chemical traits to determine the feeding preference of the gastropod. Our results do not reveal a prevalence for a specific plant attribute contributing to herbivory. Instead, they indicate that the susceptibility of aquatic plants to generalist consumers is probably related to a combination of their chemical and physical properties, resulting in moderate grazing rates by generalist consumers.

2.
Am J Bot ; 108(11): 2174-2182, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34618356

RESUMO

PREMISE: The optimal defense theory (ODT) predicts that the allocation of chemical defenses in plants will be concentrated in parts or tissues that are of higher fitness value for the individuals that produce them. Chemicals are known to be allocated to certain parts of aquatic plants, and the morphological architecture of Nymphoides humboldtiana, a species that exposes its parts to different environmental factors and consumers, may be an excellent model to evaluate within-plant susceptibility to consumers according to the ODT. METHODS: Under laboratory experimental conditions, we evaluated the defensive properties of extracts from vegetative (leaves, rhizomes, roots) and reproductive (long stem internodes, flowers, fruits) parts of N. humboldtiana against consumption by the generalist herbivorous gastropod Biomphalaria glabrata. Extracts were also subjected to chemical analysis by high-performance liquid chromatography, principal component analysis, and analysis of their relationships to defensive actions. RESULTS: Extracts of all vegetative and internode (reproductive) parts of N. humboldtiana exhibited defensive properties against B. glabrata, but the long stem internodes exhibited the highest percentage of inhibition. Chemical profiles of these parts were qualitatively and quantitatively different, but a major unidentified compound is presumably responsible for the higher defensive property found in internodes. CONCLUSIONS: Our results support the ODT, since chemical defense was more effective in long stem internodes, which have a high fitness value for N. humboldtiana to keep the flowers emerged on the water surface in response to the rapid and dynamic changes in water levels typical of freshwater environments.


Assuntos
Herbivoria , Magnoliopsida , Flores , Folhas de Planta , Raízes de Plantas
3.
Rev. bras. farmacogn ; 27(6): 702-710, Nov.-Dec. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-898725

RESUMO

ABSTRACT In general, Passiflora species have been reported for their folk medicinal use as sedative and anti-inflammatory. However, P. caerulea has already been reported to treat pulmonary diseases. Severe pulmonary tuberculosis, generally caused by Mycobacterium tuberculosis strains resistant to multiple drugs, can lead to deleterious inflammation and high mortality, encouraging new approaches in drug discovery. Thus, the aim of this work was to evaluate the Passiflora mucronata Lam., Passifloraceae, potential for tuberculosis treatment. Specifically, related to antimycobacterial activity and anti-inflammatory related effects (based on inhibition of nitric oxide, tumor necrosis factor-alpha production and antioxidant potential), as well as the chemical profile of P. mucronata. High performance liquid chromatography coupled with diode-array ultraviolet and mass spectrometer analyses of crude hydroalcoholic extract and ethyl acetate fraction showed the presence of flavonoids. Ethyl acetate fraction showed to be as antioxidant as Ginkgo biloba standard extract with EC50 of 14.61 ± 1.25 µg/ml. One major flavonoid isolated from ethyl acetate fraction was characterized as isoorientin. The hexane fraction and its main isolated compound, the triterpene β-amyrin, exhibited significant growth inhibitory activity against Mycobacterium bovis BCG (MIC50 1.61 ± 1.43 and 3.93 ± 1.05 µg/ml, respectively). In addition, Passiflora mucronata samples, specially hexane and dichloromethane fractions, as well as pure β-amyrin, showed a dose-related inhibition of lipopolysaccharide (LPS)-induced nitric oxide production. In conclusion, Passiflora mucronata presented relevant biological potential and should be considered for further studies using in vivo pulmonary tuberculosis model.

4.
Molecules ; 22(2)2017 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-28218702

RESUMO

The aim of this research was to perform a phytochemical study of the methanol leaves extract of T. guianensis (MET) guided by vasodilatory and antioxidant activities. The chemical profile of MET and the ethyl acetate fraction (EA fraction) was determined by HPLC-UV-MS and EA fraction guided fractionation by reverse-phase chromatography. The vasorelaxant effects of MET, fractions, sub-fractions and constituents were assessed on rat aorta pre-contracted with phenylephrine. Antioxidant activity was evaluated by using a DPPH assay. The results show that MET-induced vasodilation was dependent on NO/cGMP; and that the PI3K/Akt pathway seems to be the main route involved in eNOS activation. The EA fraction showed greater vasodilatory and antioxidant potency and was submitted to further fractionation. This allowed the isolation and characterization of quercetin, quercetin 3-O-(6″-O-galloyl)-ß-d-galactopyranoside and 1,4,6-tri-O-galloyl-ß-d-glucose. Also, galloyl-HHDP-hexoside and myricetin deoxyhexoside were identified by HPLC-UV-MS. These compounds are being described for the first time for T. guianensis. 1,4,6-tri-O-galloyl-ß-d-glucose and quercetin 3-O-(6″-O-galloyl)-ß-d-galactopyranoside showed no vasodilatory activity. Quercetin and myricetin glycoside seems to contribute to the MET activity, since they have been reported as vasodilatory flavonoids. MET-induced vasodilation could contribute to the hypotensive effect of T. guianensis previously reported.


Assuntos
Anacardiaceae/química , Antioxidantes/química , Antioxidantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Vasodilatadores/química , Vasodilatadores/farmacologia , Animais , Aorta/efeitos dos fármacos , Fracionamento Químico , Cromatografia Líquida , Contração Isométrica/efeitos dos fármacos , Espectrometria de Massas , Estrutura Molecular , Compostos Fitoquímicos/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA