Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Med Chem ; 66(17): 12420-12431, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37658813

RESUMO

Galectin-3 is involved in multiple pathways of many diseases, including cancer, fibrosis, and diabetes, and it is a validated pharmaceutical target for the development of novel therapeutic agents to address unmet medical needs. Novel 1,2-thiodisaccharides with a C-glycosylic functionality were synthesized by the photoinitiated thiol-ene click reaction of O-peracylated 1-C-substituted glycals and 1-thio-glycopyranoses. Subsequent global deprotection yielded test compounds, which were studied for their binding to human galectin-3 by fluorescence polarization and isothermal titration calorimetry to show low micromolar Kd values. The best inhibitor displayed a Kd value of 8.0 µM. An analysis of the thermodynamic binding parameters revealed that the binding Gibbs free energy (ΔG) of the new inhibitors was dominated by enthalpy (ΔH). The binding mode of the four most efficient 1,2-thiodisaccharides was also studied by X-ray crystallography that uncovered the unique role of water-mediated hydrogen bonds in conferring enthalpy-driven affinity enhancement for the new inhibitors. This 1,2-thiodisaccharide-type scaffold represents a new lead for galectin-3 inhibitor discovery and offers several possibilities for further development.


Assuntos
Galectina 3 , Galectinas , Humanos , Ligação de Hidrogênio , Termodinâmica , Água
2.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511048

RESUMO

Receptor activator of nuclear factor-κB ligand (RANKL) has been actively pursued as a therapeutic target for osteoporosis, given that RANKL is the master mediator of bone resorption as it promotes osteoclast differentiation, activity and survival. We employed a structure-based virtual screening approach comprising two stages of experimental evaluation and identified 11 commercially available compounds that displayed dose-dependent inhibition of osteoclastogenesis. Their inhibitory effects were quantified through TRAP activity at the low micromolar range (IC50 < 5 µΜ), but more importantly, 3 compounds displayed very low toxicity (LC50 > 100 µΜ). We also assessed the potential of an N-(1-aryl-1H-indol-5-yl)aryl-sulfonamide scaffold that was based on the structure of a hit compound, through synthesis of 30 derivatives. Their evaluation revealed 4 additional hits that inhibited osteoclastogenesis at low micromolar concentrations; however, cellular toxicity concerns preclude their further development. Taken together with the structure-activity relationships provided by the hit compounds, our study revealed potent inhibitors of RANKL-induced osteoclastogenesis of high therapeutic index, which bear diverse scaffolds that can be employed in hit-to-lead optimization for the development of therapeutics against osteolytic diseases.


Assuntos
Reabsorção Óssea , Osteogênese , Ligante RANK , Humanos , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Proteínas I-kappa B , NF-kappa B/farmacologia , Fatores de Transcrição NFATC , Osteoclastos , Osteogênese/efeitos dos fármacos , Ligante RANK/antagonistas & inibidores , Relação Estrutura-Atividade
3.
Biochemistry ; 62(11): 1706-1715, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37218877

RESUMO

The molecular details of the interaction between human angiogenin (hAng) and proliferating cell nuclear antigen (PCNA) have been investigated by isothermal titration calorimetry (ITC), mutagenesis, and NMR spectroscopy. The two proteins were shown to interact directly through immunoprecipitation studies of hAng with PCNA in vitro, and their interaction was quantified by ITC, obtaining information on stoichiometry, enthalpy, entropy, and binding kinetics of the association. The hAng-PCNA association is strong, with a Kd value of 126 nM. The interaction surface was mapped by NMR spectroscopy, indicating participating residues. A structural model for the PCNA-hAng complex was constructed by docking and molecular dynamics simulations based on NMR data. The model was validated by mutating the hAng residues Arg5 and Arg101, which seem critical for the complex formation, to glutamate. ITC experiments showed that the angiogenin variants R5E and R5ER101E displayed 6.5 and 7.8 times higher Kd values, respectively, than that of the native protein, indicating the correctness of the model. The hAng S28AT36AS37A and hAng S28AT36AS37AS87A variants were also tested as positive controls, further supporting the validity of the model. The crystal structures of the hAng variants S28AT36AS37A and S28AT36AS37AS87A showed that the mutations did not cause any significant conformational change. This study presents evidence for the structural mode of the hAng-PCNA interaction, revealing valuable information about the angiogenin and PCNA biological roles in the cytoplasm.


Assuntos
Antígeno Nuclear de Célula em Proliferação , Ribonuclease Pancreático , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/metabolismo , Termodinâmica
4.
J Med Chem ; 63(20): 12043-12059, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32955874

RESUMO

Receptor activator of nuclear factor-κB ligand (RANKL) constitutes the master mediator of osteoclastogenesis, while its pharmaceutical inhibition by a monoclonal antibody has been approved for the treatment of postmenopausal osteoporosis. To date, the pursuit of pharmacologically more favorable approaches using low-molecular-weight inhibitors has been hampered by low specificity and high toxicity issues. This study aimed to discover small-molecule inhibitors targeting RANKL trimer formation. Through a systematic screening of 39 analogues of SPD-304, a dual inhibitor of tumor necrosis factor (TNF) and RANKL trimerization, we identified four compounds (1b, 3b, 4a, and 4c) that selectively inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, without affecting TNF activity or osteoblast differentiation. Based on structure-activity observations extracted from the most potent and less toxic inhibitors of RANKL-induced osteoclastogenesis, we synthesized a focused set of compounds that revealed three potent inhibitors (19a, 19b, and 20a) with remarkably low cell-toxicity and improved therapeutic indexes as shown by the LC50 to IC50 ratio. These RANKL-selective inhibitors are an excellent starting point for the development of small-molecule therapeutics against osteolytic diseases.


Assuntos
Cromanos/farmacologia , Descoberta de Drogas , Indóis/farmacologia , Ligante RANK/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Cromanos/síntese química , Cromanos/química , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Estrutura Molecular , Osteogênese , Ligante RANK/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Índice Terapêutico
5.
J Med Chem ; 62(8): 3886-3897, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-30977659

RESUMO

Despite the clinical success of BRAF inhibitors like vemurafenib in treating metastatic melanoma, resistance has emerged through "paradoxical MEK/ERK signaling" where transactivation of one protomer occurs as a result of drug inhibition of the other partner in the activated dimer. The importance of the dimerization interface in the signaling potential of wild-type BRAF in cells expressing oncogenic Ras has recently been demonstrated and proposed as a site of therapeutic intervention in targeting cancers resistant to adenosine triphosphate competitive drugs. The proof of concept for a structure-guided approach targeting the dimerization interface is described through the design and synthesis of macrocyclic peptides that bind with high affinity to BRAF and that block paradoxical signaling in malignant melanoma cells occurring through this drug target. The lead compounds identified are type-IV kinase inhibitors and represent an ideal framework for conversion into next-generation BRAF inhibitors through macrocyclic drug discovery.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/síntese química , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Linhagem Celular , Dimerização , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Relação Estrutura-Atividade
6.
J Liposome Res ; 29(2): 142-152, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30187807

RESUMO

Vitamin A (VA) is an essential nutrient needed in small amounts by humans and supports a wide range of biological actions. Retinol, the most common and most biologically active form of VA has also been found to inhibit peroxidation processes in membranes and it has been widely used as an ingredient with pharmaceutical and nutritional applications. VA is a lipophilic molecule, sensitive to air, oxidizing agents, ultraviolet light and low pH levels. For these reasons, it is necessary for VA to be protected against oxidation. Another disadvantage in the application of VA is its low solubility in aqueous media. Both issues (sensitivity and solubility) can be solved by employing encapsulation techniques. Liposomes can efficiently encapsulate lipid-soluble materials, such as VA. The encapsulated materials are protected from environmental and chemical changes. A new liposome/ß-lactoglobulin formulation has been developed as a stable delivery system for VA. The aim of this study was the encapsulation of VA into ß-lactoglobulin-liposome complexes, recently developed in our laboratory. The in vivo bioavailability characterization of VA was tested after administration in laboratory animals (mice). In this report, we demonstrate that VA could be efficiently entrapped and delivered in a phospholipid-sterol-protein membrane resembling system, a newly synthesized promising carrier. Based on this finding, the phospholipid-sterol-protein membrane resembling system may be one of the promising approaches to enhance VA absorption and to overcome the formulation difficulties associated with lipophilic means. The carrier system described here has huge potential in food fortification applications to treat VA deficiency.


Assuntos
Antioxidantes/química , Lactoglobulinas/química , Lipossomos/química , Vitamina A/química , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Disponibilidade Biológica , Estabilidade de Medicamentos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Oxirredução , Fosfolipídeos/química , Solubilidade , Esteróis/química , Vitamina A/administração & dosagem , Vitamina A/farmacocinética
7.
Int J Biol Macromol ; 118(Pt A): 296-303, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29879410

RESUMO

The milk protein ß-lactoglobulin has been widely studied since its discovery, both as a purified protein and in mixtures with other milk proteins, where its effect on the processing properties is of importance to the dairy industry. The protein can bind a variety of small hydrophobic molecules, which may allow its use as an oral delivery vehicle. In the present study we have examined the binding of odd-numbered fatty acids by isothermal calorimetry (ITC), X-ray crystallography and computer modelling to provide a clearer picture of the extent and variability of the central binding pocket. The Kd values for the fatty acids C13, C15, C16, C17 and C19 as determined by ITC are 1.93, 2.91, 3.05, 4.11 and 8.67 × 10-7 M, respectively. The molecular structures revealed the ligands bound in the central cavity with generally well ordered lipophilic tails but significant positional variation at the carboxyl group end. In silico docking analyses identified the lipophilic interactions within the central cavity as the main driving force for binding with electrostatic interactions and H-bonds playing a minor role.


Assuntos
Ácidos Graxos/química , Lactoglobulinas/química , Ligação Proteica , Animais , Sítios de Ligação , Calorimetria , Bovinos , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Estrutura Molecular , Termodinâmica
8.
Curr Top Med Chem ; 18(8): 661-673, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875003

RESUMO

The overexpression of Tumor Necrosis Factor (TNF) is directly related to the development of several autoimmune diseases, such as rheumatoid and psoriatic arthritis, inflammatory bowel disease, Crohn's disease, refractory asthma, and multiple sclerosis. Receptor Activator of Nuclear Factor Kappa- B Ligand (RANKL) belongs to the TNF family and is the primary mediator of osteoclast-induced bone resorption through interaction with its receptor RANK. The function of RANKL is physiologically inhibited by the action of osteoprotegerin (OPG), which is a decoy receptor that binds to RANKL and prevents the process of osteoclastogenesis. Malfunction among RANK/RANKL/OPG can also result in bone loss diseases, including postmenopausal osteoporosis, rheumatoid arthritis, bone metastasis and multiple myeloma. To disrupt the unwanted functions of TNF and RANKL, current attempts focus on blocking TNF and RANKL binding to their receptors. In this review, we present the research efforts toward the development of low-molecular-weight pharmaceuticals that directly block the detrimental actions of TNF and RANKL.


Assuntos
Receptor Ativador de Fator Nuclear kappa-B/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Inibidores do Fator de Necrose Tumoral , Animais , Humanos , Ligantes , Modelos Moleculares , Peso Molecular , Ligação Proteica/efeitos dos fármacos , Receptor Ativador de Fator Nuclear kappa-B/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Fatores de Necrose Tumoral/química
9.
SLAS Discov ; 23(1): 84-93, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28586633

RESUMO

The aim of this study is to improve the aqueous solubility of a group of compounds without interfering with their bioassay as well as to create a relevant prediction model. A series of 55 potential small-molecule inhibitors of tumor necrosis factor-alpha (TNF-α; SPD304 and 54 analogues), many of which cannot be bioassayed because of their poor solubility, was used for this purpose. The solubility of many of the compounds was sufficiently improved to allow measurement of their respective dissociation constants (Kd). Parameters such as dissolution time, initial state of the solute (solid/liquid), co-solvent addition (DMSO and PEG3350), and sample filtration were evaluated. Except for filtration, the remaining parameters affected aqueous solubility, and a solubilization protocol was established according to these. The aqueous solubility of the 55 compounds in 5% DMSO was measured with this protocol, and a predictive quantitative structure property relationship model was developed and fully validated based on these data. This classification model separates the insoluble from the soluble compounds and predicts the solubility of potential small-molecule inhibitors of TNF-α in aqueous solution (containing 5% DMSO as co-solvent) with an accuracy of 81.2%. The domain of applicability of the model indicates the type of compounds for which estimation of aqueous solubility can be confidently predicted.


Assuntos
Bioensaio , Descoberta de Drogas , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/química , Sítios de Ligação , Cinética , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Solubilidade , Solventes , Termodinâmica , Fluxo de Trabalho
10.
PLoS Comput Biol ; 13(4): e1005372, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28426652

RESUMO

We present an in silico drug discovery pipeline developed and applied for the identification and virtual screening of small-molecule Protein-Protein Interaction (PPI) compounds that act as dual inhibitors of TNF and RANKL through the trimerization interface. The cheminformatics part of the pipeline was developed by combining structure-based with ligand-based modeling using the largest available set of known TNF inhibitors in the literature (2481 small molecules). To facilitate virtual screening, the consensus predictive model was made freely available at: http://enalos.insilicotox.com/TNFPubChem/. We thus generated a priority list of nine small molecules as candidates for direct TNF function inhibition. In vitro evaluation of these compounds led to the selection of two small molecules that act as potent direct inhibitors of TNF function, with IC50 values comparable to those of a previously-described direct inhibitor (SPD304), but with significantly reduced toxicity. These molecules were also identified as RANKL inhibitors and validated in vitro with respect to this second functionality. Direct binding of the two compounds was confirmed both for TNF and RANKL, as well as their ability to inhibit the biologically-active trimer forms. Molecular dynamics calculations were also carried out for the two small molecules in each protein to offer additional insight into the interactions that govern TNF and RANKL complex formation. To our knowledge, these compounds, namely T8 and T23, constitute the second and third published examples of dual small-molecule direct function inhibitors of TNF and RANKL, and could serve as lead compounds for the development of novel treatments for inflammatory and autoimmune diseases.


Assuntos
Descoberta de Drogas/métodos , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Ligante RANK/antagonistas & inibidores , Ligante RANK/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Células da Medula Óssea , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Simulação por Computador , Humanos , Ligantes , Camundongos
11.
Protein Expr Purif ; 120: 126-37, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26721705

RESUMO

During a discovery project of potential inhibitors for three proteins, TNF-α, RANKL and HO-1, implicated in the pathogenesis of rheumatoid arthritis, significant amounts of purified proteins were required. The application of statistically designed experiments for screening and optimization of induction conditions allows rapid identification of the important factors and interactions between them. We have previously used response surface methodology (RSM) for the optimization of soluble expression of TNF-α and RANKL. In this work, we initially applied RSM for the optimization of recombinant HO-1 and a 91% increase of protein production was achieved. Subsequently, we slightly modified a published incomplete factorial approach (called IF1) in order to evaluate the effect of three expression variables (bacterial strains, induction temperatures and culture media) on soluble expression levels of the three tested proteins. However, soluble expression yields of TNF-α and RANKL obtained by the IF1 method were significantly lower (<50%) than those obtained by RSM. We further modified the IF1 approach by replacing the culture media with induction times and the resulted method called IF-STT (Incomplete Factorial-Stain/Temperature/Time) was validated using the three proteins. Interestingly, soluble expression levels of the three proteins obtained by IF-STT were only 1.2-fold lower than those obtained by RSM. Although RSM is probably the best approach for optimization of biological processes, the IF-STT is faster, it examines the most important factors (bacterial strain, temperature and time) influencing protein soluble expression in a single experiment, and can be used in any recombinant protein expression project as a starting point.


Assuntos
Bioestatística , Escherichia coli/genética , Expressão Gênica , Heme Oxigenase-1/genética , Meios de Cultura , Heme Oxigenase-1/química , Ligante RANK/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Solubilidade , Temperatura , Fator de Necrose Tumoral alfa/genética
12.
Methods Mol Biol ; 1336: 29-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26231706

RESUMO

The abundance of biochemical and structural knowledge on the Cyclin-Dependent Kinases (CDKs) has provided a comprehensive but not exhaustive insight into the molecular determinants that govern their function mechanisms. The implementation of structural and functional CDK models towards developing novel anticancer strategies that will specifically target individual or multiple CDKs remains a critical need.More than 250 CDKs crystal structures are available to-date, including truncated or whole, modified or not, active or inactive forms, co-crystallized with the cyclins and/or their respective putative inhibitors, though, to our knowledge, there is no NMR solved structure available to date. We hitherto attempt to provide a useful guide from protein production to crystallization for CDK/Inhibitors complexes based on an overview of the already elucidated CDK structures, constructs and the preferable expression vectors in each case, in order to yield the respective crystals.


Assuntos
Cristalização/métodos , Quinases Ciclina-Dependentes/química , Ciclinas/antagonistas & inibidores , Animais , Baculoviridae , Linhagem Celular , Clonagem Molecular , Cristalografia por Raios X , Ciclinas/química , Bases de Dados de Proteínas , Escherichia coli/metabolismo , Humanos , Insetos , Espectroscopia de Ressonância Magnética , Biologia Molecular/métodos , Fosforilação , Conformação Proteica , Estrutura Terciária de Proteína
13.
Protein Expr Purif ; 113: 8-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25956535

RESUMO

Bacterial expression of human proteins continues to present a critical challenge in protein crystallography and drug design. While human cyclin A constructs have been extensively characterized in complex with cyclin dependent kinase 2 (CDK2), efforts to express the monomeric human cyclin A2 in Escherichia coli in a stable form, without the kinase subunit, have been laden with technical difficulties, including solubility, yield and purity. Here, optimized conditions are described with the aim of generating for first time, sufficient quantities of human recombinant cyclin A2 in a soluble and active form for crystallization and ligand characterization purposes. The studies involve implementation of a His-tagged heterologous expression system under conditions of auto-induction and mediated by molecular chaperone-expressing plasmids. A high yield of human cyclin A2 was obtained in natively folded and soluble form, through co-expression with groups of molecular chaperones from E. coli in various combinations. A one-step affinity chromatography method was utilized to purify the fusion protein products to homogeneity, and the biological activity confirmed through ligand-binding affinity to inhibitory peptides, representing alternatives for the key determinants of the CDK2 substrate recruitment site on the cyclin regulatory subunit. As a whole, obtaining the active cyclin A without the CDK partner (referred to as monomeric in this work) in a straightforward and facile manner will obviate protein--production issues with the CDK2/cyclin A complex and enable drug discovery efforts for non-ATP competitive CDK inhibition through the cyclin groove.


Assuntos
Ciclina A2/química , Ciclina A2/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Ciclina A2/genética , Ciclina A2/isolamento & purificação , Escherichia coli/genética , Humanos , Chaperonas Moleculares/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade
14.
J Med Chem ; 58(1): 433-42, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25454794

RESUMO

The cyclin groove is an important recognition site for substrates of the cell cycle cyclin dependent kinases and provides an opportunity for highly selective inhibition of kinase activity through a non-ATP competitive mechanism. The key peptide residues of the cyclin binding motif have been studied in order to precisely define the structure-activity relationship for CDK kinase inhibition. Through this information, new insights into the interactions of peptide CDK inhibitors with key subsites of the cyclin binding groove provide for the replacement of binding determinants with more druglike functionality through REPLACE, a strategy for the iterative conversion of peptidic blockers of protein-protein interactions into pharmaceutically relevant compounds. As a result, REPLACE is further exemplified in combining optimized peptidic sequences with effective N-terminal capping groups to generate more stable compounds possessing antitumor activity consistent with on-target inhibition of cell cycle CDKs. The compounds described here represent prototypes for a next generation of kinase therapeutics with high efficacy and kinome selectivity, thus avoiding problems observed with first generation CDK inhibitors.


Assuntos
Antineoplásicos/química , Quinases Ciclina-Dependentes/química , Ciclinas/química , Peptídeos/química , Inibidores de Proteínas Quinases/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
15.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 11): 1498-503, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25372816

RESUMO

The crystal structure of the triclinic form of the milk protein ß-lactoglobulin from sheep (Ovis aries) at 1.1 Šresolution is described together with a comparison of the triclinic structures of the low-pH bovine and high-pH ovine proteins. All three structures are remarkably similar, despite the well known pH-dependent conformational transition described for the bovine and porcine proteins that occurs in solution. The high resolution of the present structure determination has allowed a more accurate description of the protein than has hitherto been possible, but it is still not clear whether flexibility changes in the external loops can compensate for the presence of a significant void in the unliganded interior of the structure.


Assuntos
Lactoglobulinas/química , Lactoglobulinas/isolamento & purificação , Animais , Bovinos , Cristalografia por Raios X , Proteínas do Leite/química , Proteínas do Leite/isolamento & purificação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ovinos
16.
ACS Med Chem Lett ; 5(8): 931-6, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25147617

RESUMO

In order to quantify the interactions between molecules of biological interest, the determination of the dissociation constant (K d) is essential. Estimation of the binding affinity in this way is routinely performed in "favorable" conditions for macromolecules. Crucial data for ligand-protein binding elucidation is mainly derived from techniques (e.g., macromolecular crystallography) that require the addition of high concentration of salts and/or other additives. In this study we have evaluated the effect of temperature, ionic strength, viscosity, and hydrophobicity on the K d of three previously characterized protein-ligand systems, based on variation in their binding sites, in order to provide insight into how these often overlooked unconventional circumstances impact binding affinity. Our conclusions are as follows: (1) increasing solvent viscosity in general is detrimental to ligand binding, (2) moderate increases in temperature have marginal effects on the dissociation constant, and (3) the degree of hydrophobicity of the ligand and the binding site determines the extent of the influence of cosolvents and salt concentration on ligand binding affinity.

17.
Arch Pharm (Weinheim) ; 347(11): 798-805, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25160057

RESUMO

SPD-304 was discovered as a promising tumor necrosis factor alpha (TNF) antagonist that promotes dissociation of TNF trimers and therefore blocks the interaction of TNF and its receptor. However, SPD-304 contains a potentially toxic 3-alkylindole moiety, which can be bioactivated to a reactive electrophilic intermediate. A series of SPD-304 analogs was synthesized with the aim to diminish its toxicophore groups while maintaining the binding affinity for TNF. Incorporation of electron-withdrawing substituents at the indole moiety, in conjunction with elimination of the 6'-methyl group of the 4-chromone moiety, led to a significantly less toxic and equally potent TNF inhibitor.


Assuntos
Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Cromanos/síntese química , Cromanos/farmacologia , Desenho de Fármacos , Indóis/síntese química , Indóis/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/toxicidade , Biotransformação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromanos/metabolismo , Cromanos/toxicidade , Humanos , Indóis/metabolismo , Indóis/toxicidade , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Relação Estrutura-Atividade
18.
J Liposome Res ; 24(1): 74-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24099174

RESUMO

Vitamin E (VE) or α-tocopherol is the major fat-soluble antioxidant in the human body. It is a sensitive, easily oxidized in the air, molecule, so it must be protected from pro-oxidant elements which could affect its physiological benefits. Encapsulation constitutes a promising approach to maintain VE native properties over time and increase its concentration in aqueous media. Liposomes have been studied as sustained delivery systems, being biodegradable, non-toxic and non-immunogenic. A new liposome/ß-lactoglobulin (ß-Lg) formulation has been developed and characterized as a possible stable delivery system for VE. ß-Lg has been selected due to its property to bind a variety of hydrophobic molecules. The aim of this study was the preparation of ß-Lg-liposome formulation and the determination of VE encapsulation efficiency, in order to develop a new more efficient carrier for VE in aqueous media.


Assuntos
Sistemas de Liberação de Medicamentos , Lactoglobulinas/química , Lipossomos/química , Vitamina E/uso terapêutico , Antioxidantes , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/uso terapêutico , Oxirredução , Espécies Reativas de Oxigênio/química , Vitamina E/química
19.
Protein Expr Purif ; 94: 22-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24211770

RESUMO

The supply of many valuable proteins that have potential clinical or industrial use is often limited by their low natural availability. With the modern advances in genomics, proteomics and bioinformatics, the number of proteins being produced using recombinant techniques is exponentially increasing and seems to guarantee an unlimited supply of recombinant proteins. The demand of recombinant proteins has increased as more applications in several fields become a commercial reality. Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, producing soluble proteins in E. coli is still a major bottleneck for structural biology projects. One of the most challenging steps in any structural biology project is predicting which protein or protein fragment will express solubly and purify for crystallographic studies. The production of soluble and active proteins is influenced by several factors including expression host, fusion tag, induction temperature and time. Statistical designed experiments are gaining success in the production of recombinant protein because they provide information on variable interactions that escape the "one-factor-at-a-time" method. Here, we review the most important factors affecting the production of recombinant proteins in a soluble form. Moreover, we provide information about how the statistical design experiments can increase protein yield and purity as well as find conditions for crystal growth.


Assuntos
Escherichia coli/genética , Proteômica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Genômica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/genética
20.
Protein Expr Purif ; 90(1): 9-19, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23623854

RESUMO

Receptor activator of nuclear factor-κB (RANK) and its cognate ligand (RANKL) is a member of the TNF superfamily of cytokines which is essential in osteobiology and its overexpression has been implicated in the pathogenesis of bone degenerative diseases such as osteoporosis. Therefore, RANKL is considered a major therapeutic target for the suppression of bone resorption in bone metabolic diseases such as rheumatoid arthritis and cancer metastasis. To evaluate the inhibitory effect of potential RANKL inhibitors a sufficient amount of protein is required. In this work RANKL was cloned for expression at high levels in Escherichia coli with the interaction of changing cultures conditions in order to produce the protein in a soluble form. In an initial step, the effect of expression host on soluble protein production was investigated and BL21(DE3) pLysS was the most efficient one found for the production of RANKL. Central composite design experiment in the following revealed that cell density before induction, IPTG concentration, post-induction temperature and time as well as their interactions had a significant influence on soluble RANKL production. An 80% increase of protein production was achieved after the determination of the optimum induction conditions: OD600nm before induction 0.55, an IPTG concentration of 0.3mM, a post-induction temperature of 25°C and a post-induction time of 6.5h. Following RANKL purification the thermal stability of the protein was studied. The interaction of RANKL with SPD304, a patented small-molecule inhibitor of TNF-α, was also studied in a fluorescence binding assay resulting in a Kd value of 14.1 ± 0.5 µM.


Assuntos
Escherichia coli/genética , Ligante RANK/genética , Cromanos/farmacologia , Escherichia coli/metabolismo , Humanos , Indóis/farmacologia , Isopropiltiogalactosídeo/metabolismo , Desnaturação Proteica , Estabilidade Proteica , Ligante RANK/isolamento & purificação , Ligante RANK/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA