RESUMO
DNA methylation maintenance is essential for cell fate inheritance. In differentiated cells, this involves orchestrated actions of DNMT1 and UHRF1. In mice, the high-affinity binding of DPPA3 to the UHRF1 PHD finger regulates UHRF1 chromatin dissociation and cytosolic localization, which is required for oocyte maturation and early embryo development. However, the human DPPA3 ortholog functions during these stages remain unclear. Here, we report the structural basis for human DPPA3 binding to the UHRF1 PHD finger. The conserved human DPPA3 85VRT87 motif binds to the acidic surface of UHRF1 PHD finger, whereas mouse DPPA3 binding additionally utilizes two unique α-helices. The binding affinity of human DPPA3 for the UHRF1 PHD finger was weaker than that of mouse DPPA3. Consequently, human DPPA3, unlike mouse DPPA3, failed to inhibit UHRF1 chromatin binding and DNA remethylation in Xenopus egg extracts effectively. Our data provide novel insights into the distinct function and structure of human DPPA3.
Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Sequência de Aminoácidos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/química , Cromatina/metabolismo , Metilação de DNA , Dedos de Zinco PHD/genética , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/química , Xenopus laevis/metabolismoRESUMO
Bacteria that have acquired resistance to most antibiotics, particularly those causing nosocomial infections, create serious problems. Among these, the emergence of vancomycin-resistant enterococci was a tremendous shock, considering that vancomycin is the last resort for controlling methicillin-resistant Staphylococcus aureus. Therefore, there is an urgent need to develop an inhibitor of VanX, a protein involved in vancomycin resistance. Although the crystal structure of VanX has been resolved, its asymmetric unit contains six molecules aligned in a row. We have developed a structural model of VanX as a stable dimer in solution, primarily utilizing nuclear magnetic resonance (NMR) residual dipolar coupling. Despite the 46 kDa molecular mass of the dimer, the analyses, which are typically not as straightforward as those of small proteins around 10 kDa, were successfully conducted. We assigned the main chain using an amino acid-selective unlabeling method. Because we found that the zinc ion-coordinating active sites in the dimer structure were situated in the opposite direction to the dimer interface, we generated an active monomer by replacing an amino acid at the dimer interface. The monomer consists of only 202 amino acids and is expected to be used in future studies to screen and improve inhibitors using NMR.
Assuntos
Proteínas de Bactérias , Multimerização Proteica , D-Ala-D-Ala Carboxipeptidase Tipo Serina , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Domínio Catalítico , Metaloendopeptidases/química , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/fisiologia , Resistência a Vancomicina/genética , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/metabolismoRESUMO
Sirtuin 2 (SIRT2) is a class III histone deacetylase that is highly conserved from bacteria to mammals. We prepared and characterized the wild-type (WT) and mutant forms of the histone deacetylase (HDAC) domain of human SIRT2 (hSIRT2) using various biophysical methods and evaluated their deacetylation activity. We found that WT hSIRT2 HDAC (residues 52-357) forms a homodimer in a concentration-dependent manner with a dimer-monomer dissociation constant of 8.3 ± 0.5 µM, which was determined by mass spectrometry. The dimer was disrupted into two monomers by binding to the HDAC inhibitors SirReal1 and SirReal2. We also confirmed dimer formation of hSIRT2 HDAC in living cells using a NanoLuc complementation reporter system. Examination of the relationship between dimer formation and deacetylation activity using several mutants of hSIRT2 HDAC revealed that some non-dimerizing mutants exhibited deacetylation activity for the N-terminal peptide of histone H3, similar to the wild type. The hSIRT2 HDAC mutant Δ292-306, which lacks a SIRT2-specific disordered loop region, was identified to exist as a monomer with slightly reduced deacetylation activity; the X-ray structure of the mutant Δ292-306 was almost identical to that of the WT hSIRT2 HDAC bound to an inhibitor. These results indicate that hSIRT2 HDAC forms a dimer, but this is independent of deacetylation activity. Herein, we discuss insights into the dimer formation of hSIRT2 based on our biophysical experimental results.
Assuntos
Multimerização Proteica , Sirtuína 2 , Humanos , Sirtuína 2/metabolismo , Sirtuína 2/química , Sirtuína 2/genética , Acetilação , Células HEK293RESUMO
Hepatocyte nuclear factor 1ß (HNF1ß) is a transcription factor that plays a key role in the development and function of the liver, pancreas, and kidney. HNF1ß plays a key role in early vertebrate development and the morphogenesis of these organs. In humans, heterozygous mutations in the HNF1B gene can result in organ dysplasia, making it the most common cause of developmental renal diseases, including renal cysts, renal malformations, and familial hypoplastic glomerular cystic kidney disease. Pathogenic variants in the HNF1B gene are known to cause various diseases, including maturity-onset diabetes of the young and developmental renal diseases. This study presents the backbone resonance assignments of HNF1ß POUS and POUHD domains, which are highly conserved domains required for the recognition of double-stranded DNA. Our data will be useful for NMR studies to verify the altered structures and functions of mutant HNF1B proteins that can induce developmental renal diseases, including renal cysts, renal malformations, and familial hypoplastic glomerular cystic kidney disease. This study will provide the structural basis for future studies to elucidate the molecular mechanisms underlying how mutations in HNF1ß cause diseases.
Assuntos
Fator 1-beta Nuclear de Hepatócito , Ressonância Magnética Nuclear Biomolecular , Fator 1-beta Nuclear de Hepatócito/química , Fator 1-beta Nuclear de Hepatócito/genética , Isótopos de Nitrogênio , Domínios Proteicos , Humanos , Sequência de AminoácidosRESUMO
Site-specific histone modifications have long been recognized to play an important role in directing gene transcription in chromatin in biology of health and disease. However, concrete illustration of how different histone modifications in a site-specific manner dictate gene transcription outcomes, as postulated in the influential "Histone code hypothesis", introduced by Allis and colleagues in 2000, has been lacking. In this review, we summarize our latest understanding of the dynamic regulation of gene transcriptional activation, silence, and repression in chromatin that is directed distinctively by histone H3 lysine 27 acetylation, methylation, and crotonylation, respectively. This represents a special example of a long-anticipated verification of the "Histone code hypothesis."
Assuntos
Histonas , Lisina , Transcrição Gênica , Acetilação , Cromatina/genética , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Lisina/genética , Lisina/metabolismo , Ativação Transcricional , Domínios ProteicosRESUMO
BACKGROUND: Currently, only limited knowledge is available regarding the phenotypic association between fibroblast growth factor receptor 3 (FGFR3) alterations and the tumor microenvironment (TME) in bladder cancer (BLCA). METHODS: A multi-omics analysis on 389 BLCA and 35 adjacent normal tissues from a cohort of OMPU-NCC Consortium Japan was retrospectively performed by integrating the whole-exome and RNA-sequence dataset and clinicopathological record. A median follow-up duration of all BLCA cohort was 31 months. RESULTS: FGFR3 alterations (aFGFR3), including recurrent mutations and fusions, accounted for 44% of non-muscle invasive bladder cancer (NMIBC) and 15% of muscle-invasive bladder cancer (MIBC). Within MIBC, the consensus subtypes LumP was significantly more prevalent in aFGFR3, whereas the Ba/Sq subtype exhibited similarity between intact FGFR3 (iFGFR3) and aFGFR3 cases. We revealed that basal markers were significantly increased in MIBC/aFGFR3 compared to MIBC/iFGFR3. Transcriptome analysis highlighted TIM3 as the most upregulated immune-related gene in iFGFR3, with differential immune cell compositions observed between iFGFR3 and aFGFR3. Using EcoTyper, TME heterogeneity was discerned even within aFGFR cases, suggesting potential variations in the response to checkpoint inhibitors (CPIs). Among 72 patients treated with CPIs, the objective response rate (ORR) was comparable between iFGFR3 and aFGFR3 (20% vs 31%; p = 0.467). Strikingly, a significantly higher ORR was noted in LumP/aFGFR3 compared to LumP/iFGFR3 (50% vs 5%; p = 0.022). This trend was validated using data from the IMvigor210 trial. Additionally, several immune-related genes, including IDO1, CCL24, IL1RL1, LGALS4, and NCAM (CD56) were upregulated in LumP/iFGFR3 compared to LumP/aFGFR3 cases. CONCLUSIONS: Differential pathways influenced by aFGFR3 were observed between NMIBC and MIBC, highlighting the upregulation of both luminal and basal markers in MIBC/aFGFR3. Heterogeneous TME was identified within MIBC/aFGFR3, leading to differential outcomes for CPIs. Specifically, a favorable ORR in LumP/aFGFR3 and a poor ORR in LumP/iFGFR3 were observed. We propose TIM3 as a potential target for iFGFR3 (ORR: 20%) and several immune checkpoint genes, including IDO1 and CCL24, for LumP/iFGFR3 (ORR: 5%), indicating promising avenues for precision immunotherapy for BLCA.
Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias da Bexiga Urinária , Humanos , Prognóstico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Biomarcadores Tumorais/genética , Estudos Retrospectivos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Microambiente Tumoral , Receptor Celular 2 do Vírus da Hepatite A , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologiaRESUMO
Glioma amplified sequence 41 (GAS41), which has the Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain that recognizes lysine acetylation (Kac), regulates gene expression as a subunit of the SRCAP (SNF2-related CREBBP activator protein) complex that deposits histone H2A.Z at promoters in eukaryotes. The YEATS domains of the proteins AF9 and ENL recognize Kac by hydrogen bonding the aromatic cage to arginine situated just before K9ac or K27ac in the N-terminal tail of histone H3. Curiously, the YEATS domain of GAS41 binds most preferentially to the sequence that contains K14ac of H3 (H3K14ac) but lacks the corresponding arginine. Here, we biochemically and structurally elucidated the molecular mechanism by which GAS41 recognizes H3K14ac. First, stable binding of the GAS41 YEATS domain to H3K14ac required the N terminus of H3 (H3NT). Second, we revealed a pocket in the GAS41 YEATS domain responsible for the H3NT binding by crystallographic and NMR analyses. This pocket is away from the aromatic cage that recognizes Kac and is unique to GAS41 among the YEATS family. Finally, we showed that E109 of GAS41, a residue essential for the formation of the H3NT-binding pocket, was crucial for chromatin occupancy of H2A.Z and GAS41 at H2A.Z-enriched promoter regions. These data suggest that binding of GAS41 to H3NT via its YEATS domain is essential for its intracellular function.
Assuntos
Glioma , Histonas , Humanos , Histonas/metabolismo , Domínios Proteicos , Cromatina , ArgininaRESUMO
We aimed to develop a platform to rapidly investigate the responses of agonists and antagonists to G-protein-coupled receptors (GPCRs) using native mass spectrometry (MS). We successfully observed the ligand-bound human ß2 adrenergic receptor (hß2AR); however, it was challenging to quantitatively discuss drug efficacy from MS data alone. Since ligand-bound GPCRs are stabilized by the Gα subunit of G proteins on the membrane, mini-Gs and nanobody80 (Nb80) that can mimic the Gα interface of the GPCR were utilized. Ternary complexes of hß2AR, ligand, and mini-Gs or Nb80 were prepared and subjected to native MS. We found a strong correlation between the hß2AR-mini-Gs or -Nb80 complex ratio observed in the mass spectra and agonist/antagonist efficacy obtained using a cell-based assay. This method does not require radioisotope labeling and would be applicable to the analysis of other GPCRs, facilitating the characterization of candidate compounds as GPCR agonists and antagonists.
RESUMO
The RNA-binding motif protein 10, RBM10, is an RNA splicing regulator essential for development. Loss-of-function RBM10 variants are associated with TARP syndrome, a severe X-linked recessive condition in males. We report a 3-year-old male with a mild phenotype, consisting of cleft palate, hypotonia, developmental delay, and minor dysmorphisms, associated with a missense RBM10 variant, c.943T>C, p.Ser315Pro, affecting the RRM2 RNA-binding domain. His clinical features were similar to a previously reported case associated with a missense variant. The p.Ser315Pro mutant protein was expressed normally in the nucleus, but its expression level and protein stability were slightly reduced. Nuclear magnetic resonance spectroscopy showed that the structure and the RNA-binding ability of the RRM2 domain with the p.Ser315Pro were unaffected. However, it affects the alternative splicing regulations of downstream genes, NUMB and TNRC6A, and its splicing alteration patterns were variable depending on target transcripts. In summary, a novel germline missense RBM10 p.Ser315Pro variant that causes functional changes in the expression of its downstream genes results in a non-lethal phenotype associated with developmental delays. The functional alteration effects depend on the residues affected by missense variants. Our findings are expected to bring broader insights into the RBM10-associated genotype-phenotype relationships by delineating the molecular mechanism of RBM10 functions.
Assuntos
Processamento Alternativo , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genéticaRESUMO
Histone lysine acylation, including acetylation and crotonylation, plays a pivotal role in gene transcription in health and diseases. However, our understanding of histone lysine acylation has been limited to gene transcriptional activation. Here, we report that histone H3 lysine 27 crotonylation (H3K27cr) directs gene transcriptional repression rather than activation. Specifically, H3K27cr in chromatin is selectively recognized by the YEATS domain of GAS41 in complex with SIN3A-HDAC1 co-repressors. Proto-oncogenic transcription factor MYC recruits GAS41/SIN3A-HDAC1 complex to repress genes in chromatin, including cell-cycle inhibitor p21. GAS41 knockout or H3K27cr-binding depletion results in p21 de-repression, cell-cycle arrest, and tumor growth inhibition in mice, explaining a causal relationship between GAS41 and MYC gene amplification and p21 downregulation in colorectal cancer. Our study suggests that H3K27 crotonylation signifies a previously unrecognized, distinct chromatin state for gene transcriptional repression in contrast to H3K27 trimethylation for transcriptional silencing and H3K27 acetylation for transcriptional activation.
Assuntos
Cromatina , Histonas , Camundongos , Animais , Cromatina/genética , Histonas/metabolismo , Lisina/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , AcetilaçãoRESUMO
The relaxation dispersion (rd) of nuclear magnetic resonance provides thermodynamic and kinetic information regarding molecules for which the conformations are exchanging in equilibrium. Experiments have often been implemented with Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences for heteronuclear S-spin in SI and SI3 spin systems. One of the most common CPMG sequences contains a sequence called a P-element in the middle to average the different relaxation rates of anti-phase and in-phase coherences; however, its drawback is that the artifacts that can be compensated for are only those in one of the two S-spin doublet magnetization components, for example, SIα or SIß in an SI spin system. Thus, when the CPMG sequence is followed by a normal heteronuclear single-quantum correlation (HSQC) sequence, the detected signal will also include the other component with accumulated artifacts. To overcome this issue, we developed a new pulse sequence (AFTAC) that can suppress artifacts in both the magnetization components. Its effectiveness was demonstrated by simulations and actual measurements targeting the methyl groups of dimethylsulfoxide and N, N-dimethyltrichloroacetamide. The results demonstrated that the AFTAC sequence sufficiently suppressed the artifacts, despite being followed by an HSQC sequence that detects both components. AFTAC is particularly suitable for the rd measurements of small molecules, which are usually not deuterated and are not subject to transverse relaxation optimized spectroscopy (TROSY) sequences. AFTAC does not require 1H continuous wave irradiation for I-spin decoupling, which is necessary for certain CPMG methods that maintain S-spin in-phase coherence during the CPMG period (Tcpmg). Therefore, AFTAC places less burden on the probe, even with a long Tcpmg. Furthermore, the AFTAC method achieves a similar artifact suppression quality not only in SI but also in SI2 and SI3 spin systems.
Assuntos
Artefatos , Brânquias , Animais , Ressonância Magnética Nuclear Biomolecular/métodos , Espectroscopia de Ressonância Magnética , Conformação MolecularRESUMO
Ubiquitin-like with PHD and RING finger domain-containing protein 1 (UHRF1)-dependent DNA methylation is essential for maintaining cell fate during cell proliferation. Developmental pluripotency-associated 3 (DPPA3) is an intrinsically disordered protein that specifically interacts with UHRF1 and promotes passive DNA demethylation by inhibiting UHRF1 chromatin localization. However, the molecular basis of how DPPA3 interacts with and inhibits UHRF1 remains unclear. We aimed to determine the structure of the mouse UHRF1 plant homeodomain (PHD) complexed with DPPA3 using nuclear magnetic resonance. Induced α-helices in DPPA3 upon binding of UHRF1 PHD contribute to stable complex formation with multifaceted interactions, unlike canonical ligand proteins of the PHD domain. Mutations in the binding interface and unfolding of the DPPA3 helical structure inhibited binding to UHRF1 and its chromatin localization. Our results provide structural insights into the mechanism and specificity underlying the inhibition of UHRF1 by DPPA3.
Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Dedos de Zinco PHD , Camundongos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Cromatina , Metilação de DNA , Proteínas Cromossômicas não Histona/metabolismoRESUMO
Detailed genomic and epigenomic analyses of MECOM (the MDS1 and EVI1 complex locus) have revealed that inversion or translocation of chromosome 3 drives inv(3)/t(3;3) myeloid leukemias via structural rearrangement of an enhancer that upregulates transcription of EVI1. Here, we identify a novel, previously unannotated oncogenic RNA-splicing derived isoform of EVI1 that is frequently present in inv(3)/t(3;3) acute myeloid leukemia (AML) and directly contributes to leukemic transformation. This EVI1 isoform is generated by oncogenic mutations in the core RNA splicing factor SF3B1, which is mutated in >30% of inv(3)/t(3;3) myeloid neoplasm patients and thereby represents the single most commonly cooccurring genomic alteration in inv(3)/t(3;3) patients. SF3B1 mutations are statistically uniquely enriched in inv(3)/t(3;3) myeloid neoplasm patients and patient-derived cell lines compared with other forms of AML and promote mis-splicing of EVI1 generating an in-frame insertion of 6 amino acids at the 3' end of the second zinc finger domain of EVI1. Expression of this EVI1 splice variant enhanced the self-renewal of hematopoietic stem cells, and introduction of mutant SF3B1 in mice bearing the humanized inv(3)(q21q26) allele resulted in generation of this novel EVI1 isoform in mice and hastened leukemogenesis in vivo. The mutant SF3B1 spliceosome depends upon an exonic splicing enhancer within EVI1 exon 13 to promote usage of a cryptic branch point and aberrant 3' splice site within intron 12 resulting in the generation of this isoform. These data provide a mechanistic basis for the frequent cooccurrence of SF3B1 mutations as well as new insights into the pathogenesis of myeloid leukemias harboring inv(3)/t(3;3).
Assuntos
Leucemia Mieloide Aguda , Proto-Oncogenes , Animais , Inversão Cromossômica , Cromossomos Humanos Par 3/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , Proteína do Locus do Complexo MDS1 e EVI1/genética , Camundongos , Proto-Oncogenes/genética , Fatores de Transcrição/metabolismoRESUMO
The contribution of disordered regions to protein function and structure is a relatively new field of study and of particular significance as their function has been implicated in some human diseases. Our objective was to analyze various deletion mutants of the bromodomain-containing protein 4 (BRD4) using native mass spectrometry to characterize the gas-phase behavior of the disordered region connected to the folded domain. A protein with a single bromodomain but no long disordered linker displayed a narrow charge distribution at low charge states, suggesting a compact structure. In contrast, proteins containing one or two bromodomains connected to a long disordered region exhibited multimodal charge distributions, suggesting the presence of compact and elongated conformers. In the presence of a pan-BET-bromodomain inhibitor, JQ1, the protein-JQ1 complex ions had relatively small numbers of positive charges, corresponding to compact conformers. In contrast, the ions with extremely high charge states did not form a complex with JQ1. This suggests that all of the JQ1-bound BRD4 proteins in the gas phase are in a compact conformation, including the linker region, while the unbound forms are considerably elongated. Although these are gas-phase phenomena, it is possible that the long disordered linker connected to the bromodomain causes the denaturation of the folded domain, which, in turn, affects its JQ1 recognition.
RESUMO
There has been accumulating evidence for the clinical benefit of chemoradiation therapy (CRT), whereas mechanisms in CRT-recurrent clones derived from the primary tumor are still elusive. Herein, we identified an aberrant BUB1B/BUBR1 expression in CRT-recurrent clones in bladder cancer (BC) by comprehensive proteomic analysis. CRT-recurrent BC cells exhibited a cell-cycle-independent upregulation of BUB1B/BUBR1 expression rendering an enhanced DNA repair activity in response to DNA double-strand breaks (DSBs). With DNA repair analyses employing the CRISPR/cas9 system, we revealed that cells with aberrant BUB1B/BUBR1 expression dominantly exploit mutagenic nonhomologous end joining (NHEJ). We further found that phosphorylated ATM interacts with BUB1B/BUBR1 after ionizing radiation (IR) treatment, and the resistance to DSBs by increased BUB1B/BUBR1 depends on the functional ATM. In vivo, tumor growth of CRT-resistant T24R cells was abrogated by ATM inhibition using AZD0156. A dataset analysis identified FOXM1 as a putative BUB1B/BUBR1-targeting transcription factor causing its increased expression. These data collectively suggest a redundant role of BUB1B/BUBR1 underlying mutagenic NHEJ in an ATM-dependent manner, aside from the canonical activity of BUB1B/BUBR1 on the G2/M checkpoint, and offer novel clues to overcome CRT resistance.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regulação para Cima , Neoplasias da Bexiga Urinária/patologia , Animais , Linhagem Celular Tumoral , Quimiorradioterapia , Reparo do DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Camundongos , Transplante de Neoplasias , Fosforilação , Proteômica , Piridinas/administração & dosagem , Piridinas/farmacologia , Quinolinas/administração & dosagem , Quinolinas/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismoRESUMO
Native mass spectrometry (MS) enables the determination of the molecular mass of protein complexes. Generally, samples for native MS are isolated, purified, and prepared in volatile solutions. However, to understand the function of proteins in living cells, it is essential to characterize the protein complex as is, without isolation/purification of the protein, using the smallest possible amount of the sample. In the present study, we modified the "live single-cell MS" method, which has mainly been used in metabolomics, and applied it to observe hemoglobin directly sampled from human erythrocytes. By optimizing the experimental methods and conditions, we obtained native mass spectra of hemoglobin using only a single erythrocyte, which was directly sampled into a nanoelectrospray ionization emitter using a micromanipulator and microinjector system. That is, our method enables the analysis of â¼0.45 fmol of hemoglobin directly sampled from an erythrocyte. To our knowledge, this is the first report of native MS for endogenous proteins using a single intact human cell.
Assuntos
Eritrócitos , Hemoglobinas , Humanos , Espectrometria de Massas , Metabolômica , Espectrometria de Massas por Ionização por Electrospray , Análise EspectralRESUMO
Heme oxygenase (HO) converts heme to carbon monoxide, biliverdin, and free iron, products that are essential in cellular redox signaling and iron recycling. In higher plants, HO is also involved in the biosynthesis of photoreceptor pigment precursors. Despite many common enzymatic reactions, the amino acid sequence identity between plant-type and other HOs is exceptionally low (â¼19.5%), and amino acids that are catalytically important in mammalian HO are not conserved in plant-type HOs. Structural characterization of plant-type HO is limited to spectroscopic characterization by electron spin resonance, and it remains unclear how the structure of plant-type HO differs from that of other HOs. Here, we have solved the crystal structure of Glycine max (soybean) HO-1 (GmHO-1) at a resolution of 1.06 Å and carried out the isothermal titration calorimetry measurements and NMR spectroscopic studies of its interaction with ferredoxin, the plant-specific electron donor. The high-resolution X-ray structure of GmHO-1 reveals several novel structural components: an additional irregularly structured region, a new water tunnel from the active site to the surface, and a hydrogen-bonding network unique to plant-type HOs. Structurally important features in other HOs, such as His ligation to the bound heme, are conserved in GmHO-1. Based on combined data from X-ray crystallography, isothermal titration calorimetry, and NMR measurements, we propose the evolutionary fine-tuning of plant-type HOs for ferredoxin dependency in order to allow adaptation to dynamic pH changes on the stroma side of the thylakoid membrane in chloroplast without losing enzymatic activity under conditions of fluctuating light.
Assuntos
Ferredoxinas/química , Glycine max/química , Heme Oxigenase-1/química , Heme/química , Ferro/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Biliverdina/química , Biliverdina/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Domínio Catalítico , Cloroplastos/química , Cloroplastos/enzimologia , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Heme/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Ligação de Hidrogênio , Ferro/metabolismo , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Glycine max/enzimologia , Glycine max/genética , Tilacoides/química , Tilacoides/enzimologiaRESUMO
SeviL is a recently isolated lectin found to bind to the linear saccharides of the ganglioside GM1b (Neu5Ac[Formula: see text](2-3)Gal[Formula: see text](1-3)GalNAc[Formula: see text](1-4)Gal[Formula: see text](1-4)Glc) and its precursor, asialo-GM1 (Gal[Formula: see text](1-3)GalNAc[Formula: see text](1-4)Gal[Formula: see text](1-4)Glc). The crystal structures of recombinant SeviL have been determined in the presence and absence of ligand. The protein belongs to the [Formula: see text]-trefoil family, but shows only weak sequence similarity to known structures. SeviL forms a dimer in solution, with one binding site per subunit, close to the subunit interface. Molecular details of glycan recognition by SeviL in solution were analysed by ligand- and protein-based NMR techniques as well as ligand binding assays. SeviL shows no interaction with GM1 due to steric hindrance with the sialic acid branch that is absent from GM1b. This unusual specificity makes SeviL of great interest for the detection and control of certain cancer cells, and cells of the immune system, that display asialo-GM1.
Assuntos
Gangliosídeo G(M1)/química , Gangliosídeos/química , Lectinas/ultraestrutura , Neoplasias/genética , Animais , Bivalves/química , Sequência de Carboidratos , Gangliosídeo G(M1)/genética , Gangliosídeos/genética , Humanos , Lectinas/química , Lectinas/genética , Neoplasias/patologiaRESUMO
RBM10, is an RNA binding protein that is important for development by regulating the expression of multiple genes. RBM10 is on the X chromosome, and nonsense and frameshift RBM10 variants cause TARP syndrome in males. In a 4-year-old male, we identified a novel maternally inherited missense RBM10 variant in the RRM2 RNA binding domain, c.965C>T, p.Pro322Leu. His clinical features included intellectual disability, developmental delay, growth restriction, hypotonia, and craniofacial malformations. These features were much milder than those described in previously reported cases of TARP syndrome. By in vitro assays, we found that the mutant p.Pro322Leu RBM10 protein retained its specific RNA binding capacity, while gaining a low-affinity nonspecific RNA binding. It was normally localized to the nucleus, but its expression level was significantly reduced with a significantly short half-life. These results indicated that the p.Pro322Leu missense variant causes a developmental disorder in humans through a unique loss-of-function mechanism.
Assuntos
Pé Torto Equinovaro/genética , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Cardiopatias Congênitas/genética , Síndrome de Pierre Robin/genética , Proteínas de Ligação a RNA/genética , Pré-Escolar , Pé Torto Equinovaro/complicações , Pé Torto Equinovaro/patologia , Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/patologia , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/patologia , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Anormalidades Musculoesqueléticas/complicações , Anormalidades Musculoesqueléticas/genética , Anormalidades Musculoesqueléticas/patologia , Mutação de Sentido Incorreto/genética , Fenótipo , Síndrome de Pierre Robin/complicações , Síndrome de Pierre Robin/patologia , Sequenciamento do ExomaRESUMO
A convenient analytical system for protein-ligand interactions under crude conditions was developed using native mass spectrometry (MS). As a model protein, Escherichia coli (E. coli) dihydrofolate reductase (DHFR) with and without a histidine tag was used for the study. First, overexpressed DHFR with a His-tag was roughly purified with a Ni-sepharose resin and subjected to native mass spectrometry with or without incubation with an inhibitor, Methotrexate (MTX). Even only with the minimum cleanup by the Ni-sepharose resin, intact ions of DHFR-nicotinamide adenine dinucleotide phosphate (NADPH) and DHFR-NADPH-ligand complexes were successfully observed. By optimizing the preparation procedures of the crude sample for native MS, e.g., avoiding sonication for cell lysis, we successfully observed intact ions of the specific DHFR-NADPH-MTX ternary complex starting with cultivation of E. coli in ≤ 25 mL medium. When the crude DHFR sample was mixed with two, four, or eight candidate compounds, only ions of the specific protein-ligand complex were observed. This indicates that the present system can be used as a rapid and convenient method for the rough determination of binding of specific ligands to the target protein without the time-consuming purification of protein samples. Moreover, it is important to rapidly determine specific interactions with target proteins under conditions similar to those in "real" biological systems. Graphical abstract.