Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38894529

RESUMO

Aging is the process of gradual physio-biochemical deterioration. While aging is inevitable, healthy aging is the key to individual and communal well-being. Therefore, it is essential to understand the regulation of aging. SIN-3/Sin3 is a unique regulatory protein that regulates aging without DNA binding activity. It functions by establishing multiple protein interactions. To understand the functional mechanism of this transcriptional regulator, the Caenorhabditis elegans protein interactome was assessed for SIN-3 interactions. DAF-16/FOXO emerged as one of the leading contenders for SIN-3-mediated regulation of aging. This study looks at the concerted role of SIN-3 and DAF-16 proteins in lifespan regulation. Phenotypic profiling for the mutants of these genes shows the functional accord between these two proteins with similar functions in stress response and vital biological processes. However, there were no significant physical interactions when checked for protein-protein interaction between SIN-3 and DAF-16 proteins. C. elegans genomics and transcriptomics data also indicated the possibilities of concerted gene regulation. This genetic regulation is more likely related to SIN-3 dominance on DAF-16 function. Overall, SIN-3 and DAF-16 proteins have strong functional interactions that ensure healthy aging. The influence of SIN-3 on DAF-16 mediated stress response is one of their convergence points in longevity regulation.

2.
Mol Divers ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880544

RESUMO

Neisseria gonorrhoeae (NG), the causative organism of gonorrhea, has been classified by the World Health Organization as 'Priority' two organism owing to its increased resistance to antibiotics and even failure of recommended dual therapy with ceftriaxone and azithromycin. As a result, the general and reproductive health of infected individuals is severely compromised. The imminent public health catastrophe of antimicrobial-resistant gonococci cannot be understated, as t he of severe complications and sequelae of infection are not only increasing but their treatment has also become more expensive. Tenacious attempts are underway to discover novel drug targets as well as new drugs to fight against NG. Therefore, a considerable number of phytochemicals have been tested for their remedial intercession via targeting bacterial proteins. The MurI gene encodes for an enzyme called glutamate racemase (MurI) that is primarily involved in peptidoglycan (PG) biosynthesis and is specific to the bacterial kingdom and hence can be exploited as a potential drug target for the treatment of bacterial diseases. Accordingly, diverse families of phytochemicals were screened in silico for their binding affinity with N. Gonorrhoeae MurI (NG-MurI) protein. Esculetin, one of the shortlisted compounds, was evaluated for its functional, structural, and anti-bacterial activity. Treatment with esculetin resulted in growth inhibition, cell wall damage, and altered permeability as revealed by fluorescence and electron microscopy. Furthermore, esculetin inhibited the racemization activity of recombinant, purified NG-MurI protein, one of the enzymes required for peptidoglycan biosynthesis. Our results suggest that esculetin could be further explored as a lead compound for developing new drug molecules against multidrug-resistant strains.

3.
Sci Rep ; 12(1): 10560, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732652

RESUMO

SIN3/HDAC is a multi-protein complex that acts as a regulatory unit and functions as a co-repressor/co-activator and a general transcription factor. SIN3 acts as a scaffold in the complex, binding directly to HDAC1/2 and other proteins and plays crucial roles in regulating apoptosis, differentiation, cell proliferation, development, and cell cycle. However, its exact mechanism of action remains elusive. Using the Caenorhabditis elegans (C. elegans) model, we can surpass the challenges posed by the functional redundancy of SIN3 isoforms. In this regard, we have previously demonstrated the role of SIN-3 in uncoupling autophagy and longevity in C. elegans. In order to understand the mechanism of action of SIN3 in these processes, we carried out a comparative analysis of the SIN3 protein interactome from model organisms of different phyla. We identified conserved, expanded, and contracted gene classes. The C. elegans SIN-3 interactome -revealed the presence of  well-known proteins, such as DAF-16, SIR-2.1, SGK-1, and AKT-1/2, involved in autophagy, apoptosis, and longevity. Overall, our analyses propose  potential mechanisms by which SIN3 participates in multiple biological processes and their conservation across species and identifies candidate genes for further experimental analysis.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Apoptose/genética , Autofagia/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Longevidade/genética , Proteínas Serina-Treonina Quinases
4.
Appl Microbiol Biotechnol ; 103(2): 843-851, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30456576

RESUMO

Increasing drug resistance in pathogens including Mycobacterium tuberculosis (MTB) has been ascribed to mutations in the known target genes. However, many of these drugs have multiple targets; some of which have not been identified so far. Understanding the mechanism of action of these drugs holds a great promise in better management of disease especially by drug-resistant strains. In this study, we report glutamate racemase (MurI), a crucial enzyme of phase I peptidoglycan (PG) biosynthesis pathway of MTB, as an additional target of ethambutol (EMB). The effect on EMB on the MurI protein at structural and functional level was studied using different spectroscopic, biochemical, and insilico approaches. Spectroscopic analysis revealed that EMB-modified protein undergoes conformational alterations. Furthermore, in vitro racemization studies of the MurI protein suggest that EMB decreases its functional activity. Docking studies revealed that EMB interacts with most of the active residues at the binding site and blocks the binding pocket. Overall, data suggests that EMB, a primary drug used for the treatment of tuberculosis (TB), acts as a competitive inhibitor of substrate for binding to mycobacterial MurI protein. The study also points out to our lacunae in understanding the site and mechanism of action of existing drugs. Furthermore, glutamate racemase is a conserved protein of the bacterial kingdom; therefore, ethambutol could be a promising candidate as a broad-spectrum antibiotic for many other bacterial diseases.


Assuntos
Isomerases de Aminoácido/antagonistas & inibidores , Antituberculosos/farmacologia , Inibidores Enzimáticos/farmacologia , Etambutol/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Peptidoglicano/biossíntese , Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Sítios de Ligação , Parede Celular/metabolismo , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Ligação Proteica , Conformação Proteica , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA