RESUMO
The majority of lizards classified in the superfamily Iguanoidea have an XX/XY sex-determination system in which sex-chromosomal linkage shows homology with chicken (Gallus gallus) chromosome 15 (GGA15). However, the genomics of sex chromosomes remain largely unexplored owing to the presence of homomorphic sex chromosomes in majority of the species. Recent advances in high-throughput genome complexity reduction sequencing provide an effective approach to the identification of sex-specific loci with both single-nucleotide polymorphisms (SNPs) and restriction fragment presence/absence (PA), and a better understanding of sex chromosome dynamics in Iguanoidea. In this study, we applied Diversity Arrays Technology (DArTseqTM) in 29 phenotypic sex assignments (14 males and 15 females) of green iguana (Iguana iguana). We confirmed a male heterogametic (XX/XY) sex determination mode in this species, identifying 29 perfectly sex-linked SNP/PA loci and 164 moderately sex-linked SNP/PA loci, providing evidence probably indicative of XY recombination. Three loci from among the perfectly sex-linked SNP/PA loci showed partial homology with several amniote sex chromosomal linkages. The results support the hypothesis of an ancestral super-sex chromosome with overlaps of partial sex-chromosomal linkages. However, only one locus among the moderately sex-linked loci showed homology with GGA15, which suggests that the specific region homologous to GGA15 was located outside the non-recombination region but in close proximity to this region of the sex chromosome in green iguana. Therefore, the location of GGA15 might be further from the putative sex-determination locus in green iguana. This is a paradigm shift in understanding linkages on homomorphic X and Y sex chromosomes. The DArTseq platform provides an easy-to-use strategy for future research on the evolution of sex chromosomes in Iguanoidea, particularly for non-model species with homomorphic or highly cryptic sex chromosomes.
RESUMO
The fragmentation of habitats and hunting have impacted the Asian woolly-necked stork (Ciconia episcopus), leading to a serious risk of extinction in Thailand. Programs of active captive breeding, together with careful genetic monitoring, can play an important role in facilitating the creation of source populations with genetic variability to aid the recovery of endangered species. Here, the genetic diversity and population structure of 86 Asian woolly-necked storks from three captive breeding programs [Khao Kheow Open Zoo (KKOZ) comprising 68 individuals, Nakhon Ratchasima Zoo (NRZ) comprising 16 individuals, and Dusit Zoo (DSZ) comprising 2 individuals] were analyzed using 13 microsatellite loci, to aid effective conservation management. Inbreeding and an extremely low effective population size (Ne) were found in the KKOZ population, suggesting that deleterious genetic issues had resulted from multiple generations held in captivity. By contrast, a recent demographic bottleneck was observed in the population at NRZ, where the ratio of Ne to abundance (N) was greater than 1. Clustering analysis also showed that one subdivision of the KKOZ population shared allelic variability with the NRZ population. This suggests that genetic drift, with a possible recent and mixed origin, occurred in the initial NRZ population, indicating historical transfer between captivities. These captive stork populations require improved genetic variability and a greater population size, which could be achieved by choosing low-related individuals for future transfers to increase the adaptive potential of reintroduced populations. Forward-in-time simulations such as those described herein constitute the first step in establishing an appropriate source population using a scientifically managed perspective for an in situ and ex situ conservation program in Thailand.