Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Radiother Oncol ; 196: 110293, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653379

RESUMO

The evidence for the value of particle therapy (PT) is still sparse. While randomized trials remain a cornerstone for robust comparisons with photon-based radiotherapy, data registries collecting real-world data can play a crucial role in building evidence for new developments. This Perspective describes how the European Particle Therapy Network (EPTN) is actively working on establishing a prospective data registry encompassing all patients undergoing PT in European centers. Several obstacles and hurdles are discussed, for instance harmonization of nomenclature and structure of technical and dosimetric data and data protection issues. A preferred approach is the adoption of a federated data registry model with transparent and agile governance to meet European requirements for data protection, transfer, and processing. Funding of the registry, especially for operation after the initial setup process, remains a major challenge.

2.
Phys Med ; 118: 103301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38290179

RESUMO

PURPOSE: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J-PET) scanner for intra-treatment proton beam range monitoring. METHODS: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J-PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread-Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J-PET scanner prototype dedicated to the proton beam range assessment. RESULTS: The investigations indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple-layer dual-head geometry. The results indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for the clinical application, CONCLUSIONS:: We performed simulation studies demonstrating that the feasibility of the J-PET detector for PET-based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre-clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double-layer cylindrical and triple-layer dual-head J-PET geometry configurations seem promising for future clinical application.


Assuntos
Terapia com Prótons , Prótons , Estudos de Viabilidade , Tomografia por Emissão de Pósitrons , Terapia com Prótons/métodos , Imagens de Fantasmas , Método de Monte Carlo
4.
Radiat Prot Dosimetry ; 199(14): 1616-1619, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37721070

RESUMO

Quality control of therapeutic photon beams in the form of postal dose audits based on passive dosemeters is widely used in photon radiotherapy. On the other hand, no standardised dosimetry audit programme for proton centres has been established in Europe so far. We evaluated alanine/EPR dosimetry systems developed at the Istituto Superiore di Sanità (Italy), the Hasselt Universiteit (Belgium) and the Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences (Poland) for their applicability as a potential tool for routine mailed dose audits of passively scattered therapeutic proton beams. The evaluation was carried out in the form of an intercomparison. Dosemeters were irradiated in the 70 MeV proton beam at ocular proton therapy facility in the Cyclotron Centre Bronowice at the Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences in Krakow. A very good agreement was found between the dose measured by three laboratories and the delivered dose determined with an ionisation chamber. This, together with the inherent properties of alanine, such as non-destructive readout, tissue equivalence, weak energy dependence, dose rate independence and insignificant fading, makes alanine a good candidate for a dosemeter used in postal auditing in proton ocular radiotherapy.


Assuntos
Terapia com Prótons , Prótons , Olho , Radiometria , Alanina
5.
J Immunol ; 211(5): 782-790, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486193

RESUMO

Lymphatic endothelial cells (LECs) express MHC class II (MHC-II) upon IFN-γ stimulation, yet recent evidence suggests that LECs cannot activate naive or memory CD4+ T cells. In this article, we show that IFN-γ-activated human dermal LECs can robustly reactivate allogeneic human memory CD4+ T cells (hCD4+ TMs), but only when TGF-ß signaling is inhibited. We found that in addition to upregulating MHC-II, IFN-γ also induces LECs to upregulate glycoprotein A repetitions predominant, which anchors latent TGF-ß to the membrane and potentially inhibits T cell activation. Indeed, hCD4+ TM proliferation was substantially increased when LEC-CD4+ TM cultures were treated with a TGF-ß receptor type 1 inhibitor or when glycoprotein A repetitions predominant expression was silenced in LECs. Reactivated hCD4+ TMs were characterized by their proliferation, CD25 expression, and cytokine secretion. CD4+ TM reactivation was dependent on LEC expression of MHC-II, confirming direct TCR engagement. Although CD80 and CD86 were not detected on LECs, the costimulatory molecules OX40L and ICOSL were upregulated upon cytokine stimulation; however, blocking these did not affect CD4+ TM reactivation by LECs. Finally, we found that human dermal LECs also supported the maintenance of Foxp3-expressing hCD4+ TMs independently of IFN-γ-induced MHC-II. Together, these results demonstrate a role for LECs in directly modulating CD4+ TM reactivation under inflammatory conditions and point to LEC-expressed TGF-ß as a negative regulator of this activation.


Assuntos
Linfócitos T CD4-Positivos , Antígenos de Histocompatibilidade Classe II , Humanos , Antígenos de Histocompatibilidade Classe II/metabolismo , Células Endoteliais , Antígenos CD4 , Citocinas , Moléculas de Adesão Celular , Interferon gama , Fator de Crescimento Transformador beta
6.
J Immunol Methods ; 520: 113524, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37463649

RESUMO

The bank vole is a common Cricetidae rodent that is a reservoir of several zoonotic pathogens and an emerging model in eco-immunology. Here, we add to a developing immunological toolkit for this species by testing the cross-reactivity of commercially available monoclonal antibodies (mAbs) to the bank vole lymphocyte differentiation molecules and a transcription factor. We show that a combination of mAbs against CD4, CD3, and Foxp3 allows flow cytometric distinction of the main subsets of T cells: putative helper CD4+, cytotoxic CD8+ (as CD3+CD4-) and regulatory CD4+Foxp3+. We also provide a comparative analysis of amino acid sequences of CD4, CD8αß, CD3εγδ and Foxp3 molecules for a number of commonly studied Cricetidae rodents and discuss mAb cross-reactivity patterns reported so far in this rodent family. We found that in case of mAbs targeting the extracellular portions of commonly used T cell markers, sequence similarity is a poor prognostic of cross-reactivity. Use of more conserved, intracellular molecules or molecule fragments is a more reliable approach in non-model species, but the necessity of cell fixation limit its application in, e.g. functional studies.


Assuntos
Arvicolinae , Linfócitos T , Animais , Complexo CD3 , Citometria de Fluxo , Fatores de Transcrição Forkhead
7.
Phys Med Biol ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295440

RESUMO

OBJECTIVE: The Jagiellonian PET (J-PET) technology, based on plastic scintillators, has been proposed as a cost effective tool for detecting range deviations during proton therapy. This study investigates the feasibility of using J-PET for range monitoring by means of a detailed Monte Carlo simulation study of 95 patients who underwent proton therapy at the Cyclotron Centre Bronowice (CCB) in Krakow, Poland. Approach: Discrepancies between prescribed and delivered treatments were artificially introduced in the simulations by means of shifts in patient positioning and in the Hounsfield unit to the relative proton stopping power calibration curve. A dual-layer, cylindrical J-PET geometry was simulated in an in-room monitoring scenario and a triple-layer, dual-head geometry in an in-beam protocol. The distribution of range shifts in reconstructed PET activity was visualised in the beam's eye view. Linear prediction models were constructed from all patients in the cohort, using the mean shift in reconstructed PET activity as a predictor of the mean proton range deviation. Main results: Maps of deviations in the range of reconstructed PET distributions showed agreement with those of deviations in dose range in most patients. The linear prediction model showed a good fit, with coefficient of determination r^2 = 0.84 (in-room) and 0.75 (in-beam). Residual standard error was below 1 mm: 0.33 mm (in-room) and 0.23 mm (in-beam). Significance: The precision of the proposed prediction models shows the sensitivity of the proposed J-PET scanners to shifts in proton range for a wide range of clinical treatment plans. Furthermore, it motivates the use of such models as a tool for predicting proton range deviations and opens up new prospects for investigations into the use of intra-treatment PET images for predicting clinical metrics that aid in the assessment of the quality of delivered treatment. .

8.
Phys Med Biol ; 68(10)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37011632

RESUMO

Objective.Protons have advantageous dose distributions and are increasingly used in cancer therapy. At the depth of the Bragg peak range, protons produce a mixed radiation field consisting of low- and high-linear energy transfer (LET) components, the latter of which is characterized by an increased ionization density on the microscopic scale associated with increased biological effectiveness. Prediction of the yield and LET of primary and secondary charged particles at a certain depth in the patient is performed by Monte Carlo simulations but is difficult to verify experimentally.Approach.Here, the results of measurements performed with Timepix detector in the mixed radiation field produced by a therapeutic proton beam in water are presented and compared to Monte Carlo simulations. The unique capability of the detector to perform high-resolution single particle tracking and identification enhanced by artificial intelligence allowed to resolve the particle type and measure the deposited energy of each particle comprising the mixed radiation field. Based on the collected data, biologically important physics parameters, the LET of single protons and dose-averaged LET, were computed.Main results.An accuracy over 95% was achieved for proton recognition with a developed neural network model. For recognized protons, the measured LET spectra generally agree with the results of Monte Carlo simulations. The mean difference between dose-averaged LET values obtained from measurements and simulations is 17%. We observed a broad spectrum of LET values ranging from a fraction of keVµm-1to about 10 keVµm-1for most of the measurements performed in the mixed radiation fields.Significance.It has been demonstrated that the introduced measurement method provides experimental data for validation of LETDor LET spectra in any treatment planning system. The simplicity and accessibility of the presented methodology make it easy to be translated into a clinical routine in any proton therapy facility.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Inteligência Artificial , Transferência Linear de Energia , Dosagem Radioterapêutica , Método de Monte Carlo , Radiometria
9.
Inflamm Res ; 72(5): 915-928, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36964784

RESUMO

OBJECTIVE AND DESIGN: BacSp222 bacteriocin is a bactericidal and proinflammatory peptide stimulating immune cells to produce selected cytokines and NO in NF-ĸB dependent manner. This study aims to identify the receptor which mediates this activity. METHODS: We applied fluorescently labeled BacSp222 and a confocal microscopy imaging to analyze the direct interaction of the bacteriocin with the cells. Reporter HEK-Blue cells overexpressing human toll-like receptors (TLR2, TLR4, TLR5 or TLR2/TLR1 and TLR2/TLR6 heterodimers) were stimulated with BacSp222, and then the activity of NF-ĸB-dependent secreted embryonic alkaline phosphatase (SEAP) was measured. In turn, formylated peptide receptor (FPR) or TLR2 antagonists were used to verify bacteriocin-stimulated TNF production by murine monocyte-macrophage cell lines. RESULTS: BacSp222 undergoes internalization into cells without disturbing the cell membrane. FPR antagonists do not affect TNF produced by BacSp222-stimulated murine macrophage-like cells. In contrast, BacSp222 stimulates NF-ĸB activation in HEK-Blue overexpressing TLR2 or TLR2/TLR6 heterodimer, but not TLR2/TLR1, TLR4 or TLR5 receptors. Moreover, TLR2-specific antagonists inhibit NF-ĸB signaling in BacSp222-stimulated HEK-Blue TLR2/TLR6 cells and reduce TNF release by BacSp222-treated RAW 264.7 and P388.D1. CONCLUSIONS: BacSp222 is a novel ligand for TLR2/TLR6 heterodimer. By binding TLR complex the bacteriocin undergoes internalization, inducing proinflammatory signaling that employs MyD88 and NF-ĸB pathways.


Assuntos
Bacteriocinas , Receptor 6 Toll-Like , Humanos , Animais , Camundongos , Ligantes , Receptor 6 Toll-Like/metabolismo , NF-kappa B/metabolismo , Receptor 1 Toll-Like , Receptor 2 Toll-Like/metabolismo , Receptor 5 Toll-Like , Receptor 4 Toll-Like , Bacteriocinas/farmacologia
10.
Phys Med Biol ; 67(24)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541512

RESUMO

Objective.Verification of delivered proton therapy treatments is essential for reaping the many benefits of the modality, with the most widely proposedin vivoverification technique being the imaging of positron emitting isotopes generated in the patient during treatment using positron emission tomography (PET). The purpose of this work is to reduce the computational resources and time required for simulation of patient activation during proton therapy using the GPU accelerated Monte Carlo code FRED, and to validate the predicted activity against the widely used Monte Carlo code GATE.Approach.We implement a continuous scoring approach for the production of positron emitting isotopes within FRED version 5.59.9. We simulate treatment plans delivered to 95 head and neck patients at Centrum Cyklotronowe Bronowice using this GPU implementation, and verify the accuracy using the Monte Carlo toolkit GATE version 9.0.Main results.We report an average reduction in computational time by a factor of 50 when using a local system with 2 GPUs as opposed to a large compute cluster utilising between 200 to 700 CPU threads, enabling simulation of patient activity within an average of 2.9 min as opposed to 146 min. All simulated plans are in good agreement across the two Monte Carlo codes. The two codes agree within a maximum of 0.95σon a voxel-by-voxel basis for the prediction of 7 different isotopes across 472 simulated fields delivered to 95 patients, with the average deviation over all fields being 6.4 × 10-3σ.Significance.The implementation of activation calculations in the GPU accelerated Monte Carlo code FRED provides fast and reliable simulation of patient activation following proton therapy, allowing for research and development of clinical applications of range verification for this treatment modality using PET to proceed at a rapid pace.


Assuntos
Terapia com Prótons , Humanos , Elétrons , Prótons , Tomografia por Emissão de Pósitrons/métodos , Isótopos , Método de Monte Carlo , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
11.
Phys Med Biol ; 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36137551

RESUMO

OBJECTIVE: This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. APPROACH: The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. MAIN RESULTS: ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. SIGNIFICANCE: We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.

12.
Radiat Prot Dosimetry ; 198(19): 1471-1475, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36138419

RESUMO

The Maastro Proton Therapy Centre is the first European facility housing the Mevion S250i Hyperscan synchrocyclotron. The proximity of the accelerator to the patient, the presence of an active pencil beam delivery system downstream of a passive energy degrader and the pulsed structure of the beam make the Mevion stray neutron field unique amongst proton therapy facilities. This paper reviews the results of a rem-counter intercomparison experiment promoted by the European Radiation Dosimetry Group at Maastro and compares them with those at other proton therapy facilities. The Maastro neutron H*(10) in the room (100-200 µSv/Gy at about 2 m from the isocentre) is in line with accelerators using purely passive or wobbling beam delivery modalities, even though Maastro shows a dose gradient peaked near the accelerator. Unlike synchrotron- and cyclotron-based facilities, the pulsed beam at Maastro requires the employment of rem-counters specifically designed to withstand pulsed neutron fields.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Doses de Radiação , Nêutrons , Radiometria/métodos , Ciclotrons , Dosagem Radioterapêutica
13.
Front Oncol ; 12: 904563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957900

RESUMO

Since 2010, EURADOS Working Group 9 (Radiation Dosimetry in Radiotherapy) has been involved in the investigation of secondary and scattered radiation doses in X-ray and proton therapy, especially in the case of pediatric patients. The main goal of this paper is to analyze and compare out-of-field neutron and non-neutron organ doses inside 5- and 10-year-old pediatric anthropomorphic phantoms for the treatment of a 5-cm-diameter brain tumor. Proton irradiations were carried out at the Cyclotron Centre Bronowice in IFJ PAN Krakow Poland using a pencil beam scanning technique (PBS) at a gantry with a dedicated scanning nozzle (IBA Proton Therapy System, Proteus 235). Thermoluminescent and radiophotoluminescent dosimeters were used for non-neutron dose measurements while secondary neutrons were measured with track-etched detectors. Out-of-field doses measured using intensity-modulated proton therapy (IMPT) were compared with previous measurements performed within a WG9 for three different photon radiotherapy techniques: 1) intensity-modulated radiation therapy (IMRT), 2) three-dimensional conformal radiation therapy (3D CDRT) performed on a Varian Clinac 2300 linear accelerator (LINAC) in the Centre of Oncology, Krakow, Poland, and 3) Gamma Knife surgery performed on the Leksell Gamma Knife (GK) at the University Hospital Centre Zagreb, Croatia. Phantoms and detectors used in experiments as well as the target location were the same for both photon and proton modalities. The total organ dose equivalent expressed as the sum of neutron and non-neutron components in IMPT was found to be significantly lower (two to three orders of magnitude) in comparison with the different photon radiotherapy techniques for the same delivered tumor dose. For IMPT, neutron doses are lower than non-neutron doses close to the target but become larger than non-neutron doses further away from the target. Results of WG9 studies have provided out-of-field dose levels required for an extensive set of radiotherapy techniques, including proton therapy, and involving a complete description of organ doses of pediatric patients. Such studies are needed for validating mathematical models and Monte Carlo simulation tools for out-of-field dosimetry which is essential for dedicated epidemiological studies which evaluate the risk of second cancers and other late effects for pediatric patients treated with radiotherapy.

14.
J Inflamm Res ; 15: 4601-4621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982757

RESUMO

Purpose: The zoonotic opportunistic pathogen Staphylococcus pseudintermedius 222 produces BacSp222 - an atypical peptide exhibiting the features of a bacteriocin, a virulence factor, and a molecule modulating the host inflammatory reaction. The peptide is secreted in an unmodified form and, additionally, two forms modified posttranslationally by succinylation. This study is a comprehensive report focusing on the proinflammatory properties of such molecules. Methods: The study was performed on mouse monocyte/macrophage-like and endothelial cell lines as well as human neutrophils. The following peptides were studied: BacSp222, its succinylated forms, the form deprived of formylated methionine, and a reference bacteriocin - nisin. The measurements of the nitric oxide (NO) level, induced NO synthase (iNOS) expression, the profile of secreted cytokines, NF-kappa-B activation, reactive oxygen species (ROS) biosynthesis, and the formation of extracellular traps were conducted to evaluate the proinflammatory activity of the studied peptides. Results: BacSp222 and its succinylated forms effectively induced NO production and iNOS expression when combined with IFN-gamma in macrophage-like cells. All natural BacSp222 forms used alone or with IFN-gamma stimulated the production of TNF-alpha, MCP-1, and IL-1-alpha, while the co-stimulation with IFN-gamma increased IL-10 and IL-27. Upregulated TNF-alpha secretion observed after BacSp222 exposition resulted from increased expression but not from membrane TNF-alpha proteolysis. In neutrophils, all forms of bacteriocin upregulated IL-8, but did not induce ROS production or NETs formation. In all experiments, the activities of deformylated bacteriocin were lower or unequivocal in comparison to other forms of the peptide. Conclusion: All naturally secreted forms of BacSp222 exhibit proinflammatory activity against monocyte-macrophage cells and neutrophils, confirming that the biological role of BacSp222 goes beyond bactericidal and cytotoxic effects. The atypical posttranslational modification (succinylation) does not diminish its immunomodulatory activity in contrast to the lower antibacterial potential or cytotoxicity of such modified form established in previous studies.

15.
Radiat Oncol ; 17(1): 50, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264184

RESUMO

BACKGROUND: Variable relative biological effectiveness (vRBE) in proton therapy might significantly modify the prediction of RBE-weighted dose delivered to a patient during proton therapy. In this study we will present a method to quantify the biological range extension of the proton beam, which results from the application of vRBE approach in RBE-weighted dose calculation. METHODS AND MATERIALS: The treatment plans of 95 patients (brain and skull base patients) were used for RBE-weighted dose calculation with constant and the McNamara RBE model. For this purpose the Monte Carlo tool FRED was used. The RBE-weighted dose distributions were analysed using indices from dose-volume histograms. We used the volumes receiving at least 95% of the prescribed dose (V95) to estimate the biological range extension resulting from vRBE approach. RESULTS: The vRBE model shows higher median value of relative deposited dose and D95 in the planning target volume by around 1% for brain patients and 4% for skull base patients. The maximum doses in organs at risk calculated with vRBE was up to 14 Gy above dose limit. The mean biological range extension was greater than 0.4 cm. DISCUSSION: Our method of estimation of biological range extension is insensitive for dose inhomogeneities and can be easily used for different proton plans with intensity-modulated proton therapy (IMPT) optimization. Using volumes instead of dose profiles, which is the common method, is more universal. However it was tested only for IMPT plans on fields arranged around the tumor area. CONCLUSIONS: Adopting a vRBE model results in an increase in dose and an extension of the beam range, which is especially disadvantageous in cancers close to organs at risk. Our results support the need to re-optimization of proton treatment plans when considering vRBE.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias da Base do Crânio/radioterapia , Neoplasias Encefálicas/patologia , Feminino , Humanos , Masculino , Método de Monte Carlo , Estadiamento de Neoplasias , Órgãos em Risco , Polônia , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Neoplasias da Base do Crânio/patologia , Tomografia Computadorizada por Raios X
16.
Phys Med Biol ; 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35259730

RESUMO

Objective Proton therapy is gaining popularity because of the improved dose delivery over conventional radiation therapy. The secondary dose to healthy tissues is dominated by secondary neutrons. Commercial rem-counters are valuable instruments for the on-line assessment of neutron ambient dose equivalent (H*(10)). In general, however, a priori knowledge of the type of facility and of the radiation field is required for the proper choice of any survey meter. The novel Mevion S250i Hyperscan synchrocyclotron mounts the accelerator directly on the gantry. It provides a scanned 227 MeV proton beam, delivered in pulses with a pulse width of 10 µs at 750 Hz frequency, which is afterwards degraded in energy by a range shifter modulator system. This environment is particularly challenging for commercial rem-counters; therefore, we tested the reliability of some of the most widespread rem-counters to understand their limits in the Mevion S250i stray neutron field. Approach This work, promoted by the European Radiation Dosimetry Group (EURADOS), describes a rem-counter intercomparison at the Maastro Proton Therapy centre in the Netherlands, which houses the novel Mevion S250i Hyperscan system. Several rem-counters were employed in the intercomparison (LUPIN, LINUS, WENDI-II, LB6411, NM2B-458, NM2B-495Pb), which included simulation of a patient treatment protocol employing a water tank phantom. The outcomes of the experiment were compared with models and data from the literature. Main results We found that only the LUPIN allowed for a correct assessment of H*(10) within a 20% uncertainty. All other rem-counters underestimated the reference H*(10) by factors from 2 to more than 10, depending on the detector model and on the neutron dose per pulse. In pulsed fields, the neutron dose per pulse is a fundamental parameter, while the average neutron dose rate is a secondary quantity. An average 150-200 µSv/GyRBE neutron H*(10) at various positions around the phantom and at distances between 186 cm and 300 cm from it was measured per unit therapeutic dose delivered to the target. Significance Our results are partially in line with results obtained at similar Mevion facilities employing passive energy modulation. Comparisons with facilities employing active energy modulation confirmed that the neutron H*(10) can increase up to more than a factor of 10 when passive energy modulation is employed. The challenging environment of the Mevion stray neutron field requires the use of specific rem-counters sensitive to high-energy neutrons (up to a few hundred MeV) and specifically designed to withstand pulsed neutron fields.

17.
Med Phys ; 49(4): 2672-2683, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35090187

RESUMO

PURPOSE: Craniospinal irradiation (CSI) has greatly increased survival rates for patients with a diagnosis of medulloblastoma and other primitive neuroectodermal tumors. However, as it includes exposure of a large volume of healthy tissue to unwanted doses, there is a strong concern about the complications of the treatment, especially for the children. To estimate the risk of second cancers and other unwanted effects, out-of-field dose assessment is necessary. The purpose of this study is to evaluate and compare out-of-field doses in pediatric CSI treatment using conventional and advanced photon radiotherapy (RT) and advanced proton therapy. To our knowledge, it is the first such comparison based on in-phantom measurements. Additionally, for out-of-field doses during photon RT in this and other studies, comparisons were made using analytical modeling. METHODS: In order to describe the out-of-field doses absorbed in a pediatric patient during actual clinical treatment, an anthropomorphic phantom, which mimics the 10-year-old child, was used. Photon 3D-conformal RT (3D-CRT) and two advanced, highly conformal techniques: photon volumetric-modulated arc therapy (VMAT) and active pencil beam scanning (PBS) proton RT were used for CSI treatment. Radiophotoluminescent and poly-allyl-diglycol-carbonate nuclear track detectors were used for photon and neutron dosimetry in the phantom, respectively. Out-of-field doses from neutrons were expressed in terms of dose equivalent. A two-Gaussian model was implemented for out-of-field doses during photon RT. RESULTS: The mean VMAT photon doses per target dose to all organs in this study were under 50% of the target dose (i.e., <500 mGy/Gy), while the mean 3D-CRT photon dose to oesophagus, gall bladder, and thyroid, exceeded that value. However, for 3D-CRT, better sparing was achieved for eyes and lungs. The mean PBS photon doses for all organs were up to three orders of magnitude lower compared to VMAT and 3D-CRT and exceeded 10 mGy/Gy only for the oesophagus, intestine, and lungs. The mean neutron dose equivalent during PBS for eight organs of interest (thyroid, breasts, lungs, liver, stomach, gall bladder, bladder, prostate) ranged from 1.2 mSv/Gy for bladder to 23.1 mSv/Gy for breasts. Comparison of out-of-field doses in this and other phantom studies found in the literature showed that a simple and fast two-Gaussian model for out-of-field doses as a function of distance from the field edge can be applied in a CSI using photon RT techniques. CONCLUSIONS: PBS is the most promising technique for out-of-field dose reduction in comparison to photon techniques. Among photon techniques, VMAT is a preferred choice for most of out-of-field organs and especially for the thyroid, while doses for eyes, breasts, and lungs are lower for 3D-CRT. For organs outside the field edge, a simple analytical model can be helpful for clinicians involved in treatment planning using photon RT but also for retrospective data analysis for cancer risk estimates and epidemiology in general.


Assuntos
Neoplasias Cerebelares , Radiação Cranioespinal , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Neoplasias Cerebelares/radioterapia , Criança , Radiação Cranioespinal/efeitos adversos , Radiação Cranioespinal/métodos , Humanos , Masculino , Órgãos em Risco/efeitos da radiação , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
18.
Radiother Oncol ; 163: 143-149, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461183

RESUMO

PURPOSE: We investigated the relationship between RBE-weighted dose (DRBE) calculated with constant (cRBE) and variable RBE (vRBE), dose-averaged linear energy transfer (LETd) and the risk of radiographic changes in skull base patients treated with protons. METHODS: Clinical treatment plans of 45 patients were recalculated with Monte Carlo tool FRED. Radiographic changes (i.e. edema and/or necrosis) were identified by MRI. Dosimetric parameters for cRBE and vRBE were computed. Biological margin extension and voxel-based analysis were employed looking for association of DRBE(vRBE) and LETd with brain edema and/or necrosis. RESULTS: When using vRBE, Dmax in the brain was above the highest dose limits for 38% of patients, while such limit was never exceeded assuming cRBE. Similar values of Dmax were observed in necrotic regions, brain and temporal lobes. Most of the brain necrosis was in proximity to the PTV. The voxel-based analysis did not show evidence of an association with high LETd values. CONCLUSIONS: When looking at standard dosimetric parameters, the higher dose associated with vRBE seems to be responsible for an enhanced risk of radiographic changes. However, as revealed by a voxel-based analysis, the large inter-patient variability hinders the identification of a clear effect for high LETd.


Assuntos
Terapia com Prótons , Neoplasias da Base do Crânio , Encéfalo/diagnóstico por imagem , Humanos , Método de Monte Carlo , Necrose/etiologia , Terapia com Prótons/efeitos adversos , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Neoplasias da Base do Crânio/diagnóstico por imagem , Neoplasias da Base do Crânio/radioterapia
19.
Phys Med ; 82: 54-63, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33588228

RESUMO

The 4D Treatment Planning Workshop for Particle Therapy, a workshop dedicated to the treatment of moving targets with scanned particle beams, started in 2009 and since then has been organized annually. The mission of the workshop is to create an informal ground for clinical medical physicists, medical physics researchers and medical doctors interested in the development of the 4D technology, protocols and their translation into clinical practice. The 10th and 11th editions of the workshop took place in Sapporo, Japan in 2018 and Krakow, Poland in 2019, respectively. This review report from the Sapporo and Krakow workshops is structured in two parts, according to the workshop programs. The first part comprises clinicians and physicists review of the status of 4D clinical implementations. Corresponding talks were given by speakers from five centers around the world: Maastro Clinic (The Netherlands), University Medical Center Groningen (The Netherlands), MD Anderson Cancer Center (United States), University of Pennsylvania (United States) and The Proton Beam Therapy Center of Hokkaido University Hospital (Japan). The second part is dedicated to novelties in 4D research, i.e. motion modelling, artificial intelligence and new technologies which are currently being investigated in the radiotherapy field.


Assuntos
Inteligência Artificial , Tomografia Computadorizada Quadridimensional , Humanos , Japão , Polônia , Planejamento da Radioterapia Assistida por Computador
20.
Int J Nanomedicine ; 14: 9587-9602, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824153

RESUMO

BACKGROUND: The functionalization of a nanoparticle surface with PEG (polyethylene glycol) is an approach most often used for extending nanomaterial circulation time, enhancing its delivery and retention in the target tissues, and decreasing systemic toxicity of nanocarriers and their cargos. However, because PEGylated nanomedicines were reported to induce immune response including production of anti-PEG antibodies, activation of the complement system as well as hypersensitivity reactions, hydrophilic polymers other than PEG are gaining interest as its replacement in nanomaterial functionalization. Here, we present the results of in vivo evaluation of polyelectrolyte nanocapsules with biodegradable, polyelectrolyte multilayer shells consisting of poly-l-lysine (PLL) and poly-l-glutamic (PGA) acid as a potential drug delivery system. We compared the effects of nanocapsules functionalized with two different "stealth" polymers as the external layer of tested nanocapsules was composed of PGA (PGA-terminated nanocapsules, NC-PGA) or the copolymer of poly-l-lysine and polyethylene glycol (PEG-terminated nanocapsules, NC-PEG). METHODS: Nanocapsules pharmacokinetics, biodistribution and routes of eliminations were analysed postmortem by fluorescence intensity measurement. Toxicity of intravenously injected nanocapsules was evaluated with analyses of blood morphology and biochemistry and by histological tissue analysis. DNA integrity was determined by comet assay, cytokine profiling was performed using flow cytometer and detection of antibodies specific to PEG was performed by ELISA assay. RESULTS: We found that NC-PGA and NC-PEG had similar pharmacokinetic and biodistribution profiles and both were eliminated by hepatobiliary and renal clearance. Biochemical and histopathological evaluation of long-term toxicity performed after a single as well as repeated intravenous injections of nanomaterials demonstrated that neither NC-PGA nor NC-PEG had any acute or chronic hemato-, hepato- or nephrotoxic effects. In contrast to NC-PGA, repeated administration of NC-PEG resulted in prolonged increased serum levels of a number of cytokines. CONCLUSION: Our results indicate that NC-PEG may cause undesirable activation of the immune system. Therefore, PGA compares favorably with PEG in equipping nanomaterials with stealth properties. Our research points to the importance of a thorough assessment of the potential influence of nanomaterials on the immune system.


Assuntos
Nanocápsulas/toxicidade , Polieletrólitos/farmacocinética , Polieletrólitos/toxicidade , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/toxicidade , Ácido Poliglutâmico/farmacocinética , Ácido Poliglutâmico/toxicidade , Animais , Citocinas/sangue , Sistemas de Liberação de Medicamentos , Feminino , Fluorescência , Camundongos Endogâmicos BALB C , Nanocápsulas/química , Especificidade de Órgãos/efeitos dos fármacos , Polieletrólitos/química , Polietilenoglicóis/química , Ácido Poliglutâmico/química , Rodaminas/química , Distribuição Tecidual , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA