Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rep Prog Phys ; 87(8)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38861964

RESUMO

Molecular Dynamics (MD) simulations of glass-forming liquids play a pivotal role in uncovering the molecular nature of the liquid vitrification process. In particular, much focus was given to elucidating the interplay between the character of intermolecular potential and molecular dynamics behaviour. This has been tried to achieve by simulating the spherical particles interacting via isotropic potential. However, when simulation and experimental data are analysed in the same way by using the density scaling approaches, serious inconsistency is revealed between them. Similar scaling exponent values are determined by analysing the relaxation times and pVT data obtained from computer simulations. In contrast, these values differ significantly when the same analysis is carried out in the case of experimental data. As discussed thoroughly herein, the coherence between results of simulation and experiment can be achieved if anisotropy of intermolecular interactions is introduced to MD simulations. In practice, it has been realized in two different ways: (1) by using the anisotropic potential of the Gay-Berne type or (2) by replacing the spherical particles with quasi-real polyatomic anisotropic molecules interacting through isotropic Lenard-Jones potential. In particular, the last strategy has the potential to be used to explore the relationship between molecular architecture and molecular dynamics behaviour. Finally, we hope that the results presented in this review will also encourage others to explore how 'anisotropy' affects remaining aspects related to liquid-glass transition, like heterogeneity, glass transition temperature, glass forming ability, etc.

2.
Phys Rev E ; 109(3-1): 034608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632762

RESUMO

The contribution of cross- and self-correlations to the dielectric and light-scattering spectra of supercooled polar glass formers has recently become a most challenging problem. Herein, we employ dielectric spectroscopy, depolarized dynamic light scattering (DDLS), and rheology to thoroughly examine the dynamics of van der Waals liquid 1,2-Diphenylvinylene. Carbonate (DVC), which is a polar counterpart of canonical glass former ortho-Terphenyl (OTP). We show that the light-scattering data correspond well with the dielectric permittivity function over a wide T range. This pattern is very different from the peaks' separation ω_{max}^{DDLS}/ω_{max}^{BDS}=3.7 reported recently for tributyl phosphate (TBP), despite the same dielectric characteristics of these two glass formers (ß_{KWW}=0.75, Δɛ=20 for both TBP and DVC; KWW stands for Kohlrausch-Williams-Watts). This indicates different influence of orientational correlations in both methods for these two systems. We also show the results of the computer simulations of the model, polar molecules, which clearly indicate that the contribution of the cross-term to the correlation function probed in the DDLS experiment can be significant.

3.
J Chem Phys ; 158(14): 144503, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37061492

RESUMO

In this article, we unravel the problem of interpreting the density scaling exponent for the polyatomic molecules representing the real van der Waals liquids. Our studies show that the density scaling exponent is a weighted average of the exponents of the repulsive terms of all interatomic interactions that occur between molecules, where the potential energy of a given interaction represents its weight. It implies that potential energy is a key quantity required to calculate the density scaling exponent value for real molecules. Finally, we use the well-known method for potential energy estimation and show that the density scaling exponent could be successfully predicted from the liquid structure for fair representatives of the real systems.

4.
Phys Rev E ; 101(1-1): 012613, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069552

RESUMO

In this paper, based on the molecular dynamics simulations of quasireal model systems, we propose a method for determination of the effective intermolecular potential for real materials. We show that in contrast to the simple liquids, the effective intermolecular potential for the studied systems depends on the thermodynamic conditions. Nevertheless, the previously established relationship for simple liquids between the exponent of the inverse power law approximation of intermolecular potential and the density-scaling exponent is still preserved when small enough intermolecular distances are considered. However, our studies show that molecules approach each other at these very short distances relatively rarely. Consequently, only sparse interactions between extremely close molecules determine the value of the scaling exponent and then strongly influence the connection between dynamics and thermodynamics of the whole system.

5.
Phys Rev E ; 102(6-1): 062140, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33466035

RESUMO

In this paper, we examine the virial- and the potential-energy correlation for quasireal model systems. This correlation constitutes the framework of the theory of the isomorph in the liquid phase diagram commonly examined using simple liquids. Interestingly, our results show that for the systems characterized by structural anisotropy and flexible bonds, the instantaneous values of total virial and total potential energy are entirely uncorrelated. It is due to the presence of the intramolecular interactions because the contributions to the virial and potential energy resulting from the intermolecular interactions still exhibit strong linear dependence. Interestingly, in contrast to the results reported for simple liquids, the slope of the mentioned linear dependence is different than the values of the density scaling exponent. However, our findings show that for quasireal materials, the slope of dependence between the virial and potential energy (resulting from the intermolecular interactions) strongly depends on the interval of intermolecular distances that are taken into account. Consequently, the value of the slope of the discussed relationship, which enables satisfactory density scaling, can be obtained. Interestingly, this conclusion is supported by the results obtained for analogous systems without intermolecular attraction, for which the value the slope of the virial-potential-energy correlation is independent of considered intermolecular distances, directly corresponds to the exponent of the intermolecular repulsion, and finally leads to accurate density scaling.

6.
J Chem Phys ; 150(1): 014501, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621418

RESUMO

Theoretical concepts in condensed matter physics are typically verified and also developed by exploiting computer simulations mostly in simple models. Predictions based on these usually isotropic models are often at odds with measurement results obtained for real materials. One of the examples is an intriguing problem within the density scaling idea that has attracted attention in recent decades due to its hallmarks of universality, i.e., the fact that the difference between the density scaling exponent and the exponent of the equation of state is observed for real materials, whereas it has not been reported for the model system. In this paper, we use new model molecules of simple but anisotropic architecture to study the effect of molecular anisotropy on the dynamic and thermodynamic properties of the system. We identify the applicable range of intermolecular interactions for a given physical process, and then we explain the reason for observed differences between the behavior of the model and real systems. It demonstrates that the new model systems open broad perspectives for simulation and theoretical research, for example, into unifying concepts in the glass transition physics.

7.
Phys Chem Chem Phys ; 19(22): 14366-14375, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28540942

RESUMO

High pressure and nanoscopic confinement are two different strategies commonly employed to modify the physicochemical properties of various materials. Both strategies act mostly by changing the molecular packing. In this work, we performed a comparative study on the effect of compression and confined geometry on crystallization of a molecular liquid. Dielectric spectroscopy was employed to investigate the crystallization of the van der Waals liquid, dimethyl phthalate, in nanoporous alumina of different pore sizes as well as on increased pressure (up to 200 MPa). The analysis of the crystallization kinetics under varying thermodynamic conditions revealed that both strategies affect the crystallization behavior of the sample in very distinct ways. Compression shifts the maximum crystallization rate towards a higher temperature and broadens it. As a result, it is more challenging to avoid crystallization upon cooling the liquid at high pressure. In contrast, when the same material is incorporated into nanopores, crystallization significantly slows down and the maximum rate shifts towards a lower temperature with decreasing pore size. Finally, we show that crystallization in nanoporous alumina is accompanied by pre-crystallization effects upon which a shift of the α-relaxation peak is observed. An equilibration process prior to the initiation of crystallization was detected for the confined material both above and below the glass transition temperature of the interfacial layer, while not in the bulk.

8.
J Chem Phys ; 143(2): 024502, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26178113

RESUMO

In this paper, we define and experimentally verify thermodynamic characteristics of the liquid-glass transition, taking into account a kinetic origin of the process. Using the density scaling law and the four-point measure of the dynamic heterogeneity of molecular dynamics of glass forming liquids, we investigate contributions of enthalpy, temperature, and density fluctuations to spatially heterogeneous molecular dynamics at the liquid-glass transition, finding an equation for the pressure coefficient of the glass transition temperature, dTg/dp. This equation combined with our previous formula for dTg/dp, derived solely from the density scaling criterion, implies a relationship among thermodynamic coefficients at Tg. Since this relationship and both the equations for dTg/dp are very well validated using experimental data at Tg, they are promising alternatives to the classical Prigogine-Defay ratio and both the Ehrenfest equations in case of the liquid-glass transition.

9.
Phys Rev Lett ; 115(26): 265702, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26765007

RESUMO

Dielectric relaxation studies for model glass-forming liquids confined to nanoporous alumina matrices were examined together with high-pressure results. For confined liquids which show the deviation from bulk dynamics upon approaching the glass transition (the change from the Vogel-Fulcher-Tammann to the Arrhenius law), we have observed a striking agreement between the temperature dependence of the α-relaxation time in the Arrhenius-like region and the isochoric relaxation times extrapolated from the positive range of pressure to the negative pressure domain. Our finding provides strong evidence that glass-forming liquid confined to native nanopores enters the isochoric conditions once the mobility of the interfacial layer becomes frozen in. This results in the negative pressure effects on cooling. We also demonstrate that differences in the sensitivity of various glass-forming liquids to the "confinement effects" can be rationalized by considering the relative importance of thermal energy and density contributions in controlling the α-relaxation dynamics (the E(v)/E(p) ratio).


Assuntos
Modelos Químicos , Nanoporos , Pressão , Vitrificação
10.
J Chem Phys ; 140(4): 044502, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25669550

RESUMO

In this paper, based on the effective intermolecular potential with well separated density and configuration contributions and the definition of the isothermal bulk modulus, we derive two similar equations of state dedicated to describe volumetric data of supercooled liquids studied in the extremely wide pressure range related to the density range, which is extremely wide in comparison with the experimental range reached so far in pressure-volume-temperature measurements of glass-forming liquids. Both the equations comply with the generalized density scaling law of molecular dynamics versus h(ρ)/T at different densities ρ and temperatures T, where the scaling exponent can be in general only a density function γ(ρ) = d ln h/d ln ρ as recently argued by the theory of isomorphs. We successfully verify these equations of state by using data obtained from molecular dynamics simulations of the Kob-Andersen binary Lennard-Jones liquid. As a very important result, we find that the one-parameter density function h(ρ) analytically formulated in the case of this prototypical model of supercooled liquid, which implies the one-parameter density function γ(ρ), is able to scale the structural relaxation times with the value of this function parameter determined by fitting the volumetric simulation data to the equations of state. We also show that these equations of state properly describe the pressure dependences of the isothermal bulk modulus and the configurational isothermal bulk modulus in the extremely wide pressure range investigated by the computer simulations. Moreover, we discuss the possible forms of the density functions h(ρ) and γ(ρ) for real glass formers, which are suggested to be different from those valid for the model of supercooled liquid based on the Lennard-Jones intermolecular potential.

11.
Phys Rev Lett ; 111(12): 125701, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24093275

RESUMO

In this Letter, we show how temperature and density fluctuations affect the spatially heterogeneous dynamics at ambient and elevated pressures. By using high-pressure experimental data for van der Waals liquids, we examine contributions of the temperature and density fluctuations to the dynamics heterogeneity. We show that the dynamic heterogeneity decreases significantly with increasing pressure at a constant structural relaxation time (isochronal condition), while the broadening of the relaxation spectrum remains constant. This observation questions the relationship between spectral broadening and dynamic heterogeneity.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(4 Pt 1): 041502, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23214586

RESUMO

We report that the pressure coefficient of the glass transition temperature, dT(g)/dp, which is commonly used to determine the pressure sensitivity of the glass transition temperature T(g), can be predicted in the thermodynamic scaling regime. We show that the equation derived from the isochronal condition combined with the well-known scaling, TV(γ) = const, predicts successfully values of dT(g)/dp for a variety of glass-forming systems, including van der Waals liquids, polymers, and ionic liquids.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(3 Pt 1): 031501, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23030917

RESUMO

The crucial problem for better understanding the nature of glass transition and related relaxation phenomena is to find proper interrelations between the molecular dynamics and thermodynamics of viscous systems. To make progress towards this goal the recently observed density scaling of viscous liquid dynamics has been very intensively and successfully studied in the past few years. However, previous attempts at related scaling of volumetric data yielded results inconsistent with those found from the density scaling of molecular dynamics. In this paper, we show that volumetric data obtained from simulations in simple molecular models based on the Lennard-Jones (LJ) potential, such as the Kob-Andersen binary LJ liquid, its repulsive inverse power-law version, and the Lewis-Wahnström o-terphenyl model, can be scaled by using the same value of the exponent, which scales dynamic quantities and is directly related to the exponent of the repulsive inverse power law that underlies short-range approximations of the LJ potential.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 1): 041505, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21599167

RESUMO

In this paper, a general equation of state (EOS) valid for fluids in the vicinity of the glass transition is derived on the basis of its isothermal precursor. This EOS is able to predict the density scaling of both isobaric and isothermal PVT data and it explicitly involves the scaling exponent γ(EOS), which is most likely straightforwardly related to the exponent of the inverse power law of some effective potential valid for viscous systems. This EOS and the density scaling are very successfully tested for representatives of several material classes (van der Waals liquids, polymer melts, ionic liquids, and even strongly hydrogen-bonded systems). Additionally, if the thermodynamic scaling of primary relaxation times can be achieved with the scaling exponent γ for a given material, then the value γ(EOS) found from fitting its PVT data to the EOS enables us to evaluate the value γ, which is always considerably smaller than γ(EOS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA