Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Drugs Aging ; 41(2): 153-164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319492

RESUMO

BACKGROUND: Adverse anticholinergic drug reactions are common, yet evidence on how to reduce exposure to anticholinergic activity and reliably measure successful deprescribing is still scant. This study proposes an algorithm-based approach to evaluate and reduce anticholinergic load, and reports the results of its pilot testing. METHODS: Based on published evidence and expert opinion, a list of 85 anticholinergic drugs and 21 algorithms for reducing anticholinergic load, e.g., by recommending alternative drugs with lower risk, were developed. An accompanying test battery was assembled by focusing on instruments that sensitively reflect anticholinergic load and may be sensitive to depict changes (Neuropsychological Assessment Battery to measure memory and attention, validated assessments for constipation, urinary symptoms, and xerostomia, as well as blood biomarkers). The approach was pilot-tested in a geriatric rehabilitation unit, with clinician feedback as the primary outcome and characterization of anticholinergic symptoms as the secondary outcome. The intervention was delivered by a pharmacist and a clinical pharmacologist who used the algorithms to generate personalized recommendation letters. RESULTS: We included a total of 20 patients, 13 with anticholinergic drugs and 7 without. Recommendations were made for 22 drugs in nine patients from the intervention group, of which seven letters (78%) were considered helpful and 8/22 (36%) anticholinergic drugs were discontinued, reducing anticholinergic load in seven patients. In contrast to patients without drug change, memory assessment in patients with reduced anticholinergic load improved significantly after 2 weeks (6 ± 3 vs. -1 ± 6 points). CONCLUSIONS: The approach was well received by the participating physicians and might support standardized anticholinergic deprescribing.


Assuntos
Desprescrições , Médicos , Humanos , Idoso , Antagonistas Colinérgicos/efeitos adversos , Pacientes , Constipação Intestinal/induzido quimicamente
2.
Alzheimer Dis Assoc Disord ; 37(4): 315-321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015424

RESUMO

BACKGROUND: Despite substantial progress made in the past decades, the pathogenesis of sporadic Alzheimer disease (sAD) and related biological markers of the disease are still controversially discussed. Cerebrospinal fluid and functional brain imaging markers have been established to support the clinical diagnosis of sAD. Yet, due to the invasiveness of such diagnostics, less burdensome markers have been increasingly investigated in the past years. Among such markers, extracellular vesicles may yield promise in (early) diagnostics and treatment monitoring in sAD. MATERIALS AND METHODS: In this pilot study, we collected the blood plasma of 18 patients with sAD and compared the proteome of extracted extracellular vesicles with the proteome of 11 age-matched healthy controls. The resulting proteomes were characterized by Gene Ontology terms and between-group statistics. RESULTS: Ten distinct proteins were found to significantly differ between sAD patients and controls (P<0.05, False Discovery Rate, corrected). These proteins included distinct immunoglobulins, fibronectin, and apolipoproteins. CONCLUSIONS: These findings lend further support for exosomal changes in neurodegenerative disorders, and particularly in sAD. Further proteomic research could decisively advance our knowledge of sAD pathophysiology as much as it could foster the development of clinically meaningful biomarkers.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Projetos Piloto , Proteoma , Proteômica , Biomarcadores
3.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958765

RESUMO

Patients with sepsis-associated delirium (SAD) show severe neurological impairment, often require an intensive care unit (ICU) stay and have a high risk of mortality. Hence, useful biomarkers for early detection of SAD are urgently needed. Extracellular vesicles (EVs) and their cargo are known to maintain normal physiology but also have been linked to numerous disease states. Here, we sought to identify differentially expressed proteins in plasma EVs from SAD patients as potential biomarkers for SAD. Plasma EVs from 11 SAD patients and 11 age-matched septic patients without delirium (non-SAD) were isolated by differential centrifugation, characterized by nanoparticle tracking analysis, transmission electron microscopy and Western blot analysis. Differential EV protein expression was determined by mass spectrometry and the resulting proteomes were characterized by Gene Ontology term and between-group statistics. As preliminary results because of the small group size, five distinct proteins showed significantly different expression pattern between SAD and non-SAD patients (p ≤ 0.05). In SAD patients, upregulated proteins included paraoxonase-1 (PON1), thrombospondin 1 (THBS1), and full fibrinogen gamma chain (FGG), whereas downregulated proteins comprised immunoglobulin (IgHV3) and complement subcomponent (C1QC). Thus, plasma EVs of SAD patients show significant changes in the expression of distinct proteins involved in immune system regulation and blood coagulation as well as in lipid metabolism in this pilot study. They might be a potential indicator for to the pathogenesis of SAD and thus warrant further examination as potential biomarkers, but further research is needed to expand on these findings in longitudinal study designs with larger samples and comprehensive polymodal data collection.


Assuntos
Vesículas Extracelulares , Encefalopatia Associada a Sepse , Humanos , Projetos Piloto , Encefalopatia Associada a Sepse/metabolismo , Estudos Longitudinais , Vesículas Extracelulares/metabolismo , Proteoma/metabolismo , Biomarcadores/metabolismo , Arildialquilfosfatase/metabolismo
4.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742860

RESUMO

Galectin-4 (Gal4) has been suggested to function as a tumor suppressor in colorectal cancer (CRC). In order to systematically explore its function in CRC, we established a CRC cell line where Gal4 expression can be regulated via the doxycycline (dox)-inducible expression of a single copy wildtype LGALS4 transgene generated by recombinase-mediated cassette exchange (RMCE). Using this model and applying in-depth proteomic and phosphoproteomic analyses, we systematically screened for intracellular changes induced by Gal4 expression. Overall, 3083 cellular proteins and 2071 phosphosites were identified and quantified, of which 1603 could be matched and normalized to their protein expression levels. A bioinformatic analysis revealed that most of the regulated proteins and phosphosites can be localized in the nucleus and are categorized as nucleic acid-binding proteins. The top candidates whose expression was modulated by Gal4 are PURB, MAPKAPK3, BTF3 and BCAR1, while the prime candidates with altered phosphorylation included ZBTB7A, FOXK1, PURB and CK2beta. In order to validate the (phospho)proteomic data, we confirmed these candidates by a radiometric metabolic-labelling and immunoprecipitation strategy. All candidates exert functions in the transcriptional or translational control, indicating that Gal4 might be involved in these processes by affecting the expression or activity of these proteins.


Assuntos
Neoplasias Colorretais , Proteômica , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA , Fatores de Transcrição Forkhead , Galectina 4 , Humanos , Espaço Intracelular/metabolismo , Proteômica/métodos , Recombinases , Fatores de Transcrição
5.
Methods Mol Biol ; 2442: 247-288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320531

RESUMO

Mammalian galectins have no signal peptide, and it is not known what would happen if a galectin is directed to take the classical export route. The corresponding engineering of galectin-specific cDNA will answer questions on the fate of a signal peptide-bearing protein variant after its entry into the endoplasmic reticulum (ER). Affinity chromatography and mass-spectrometric analysis of occupancy of potential N-glycosylation sites for the galectin, binding and functional assays with cells as well as subcellular fractionation by density gradient ultracentrifugation and immunocytochemical colocalization with ER/Golgi markers report on aspects of the consequences of letting a galectin enter new territory. Applying these methods will help to clarify why galectins are leaderless and thus produced by free ribosomes.


Assuntos
Retículo Endoplasmático , Galectinas , Animais , Retículo Endoplasmático/metabolismo , Galectinas/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Mamíferos/metabolismo , Sinais Direcionadores de Proteínas
6.
Chembiochem ; 23(13): e202100327, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34496130

RESUMO

A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.


Assuntos
Ácidos Nucleicos , Açúcares , Carboidratos/química , Lectinas/metabolismo , Polissacarídeos/química
7.
Cancer Med ; 10(19): 6807-6822, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34546000

RESUMO

Rocaglates are natural compounds that have been extensively studied for their ability to inhibit translation initiation. Rocaglates represent promising drug candidates for tumor treatment due to their growth-inhibitory effects on neoplastic cells. In contrast to natural rocaglates, synthetic analogues of rocaglates have been less comprehensively characterized, but were also shown to have similar effects on the process of protein translation. Here, we demonstrate an enhanced growth-inhibitory effect of synthetic rocaglates when combined with glucose anti-metabolite 2-deoxy-D-glucose (2DG) in different cancer cell lines. Moreover, we unravel a new aspect in the mechanism of action of synthetic rocaglates involving reduction of glucose uptake mediated by downregulation or abrogation of glucose transporter GLUT-1 expression. Importantly, cells with genetically induced resistance to synthetic rocaglates showed substantially less pronounced treatment effect on glucose metabolism and did not demonstrate GLUT-1 downregulation, pointing at the crucial role of this mechanism for the anti-tumor activity of the synthetic rocaglates. Transcriptome profiling revealed glycolysis as one of the major pathways differentially regulated in sensitive and resistant cells. Analysis of synthetic rocaglate efficacy in a 3D tissue context with a co-culture of tumor and normal cells demonstrated a selective effect on tumor cells and substantiated the mechanistic observations obtained in cancer cell lines. Increased glucose uptake and metabolism is a universal feature across different tumor types. Therefore, targeting this feature by synthetic rocaglates could represent a promising direction for exploitation of rocaglates in novel anti-tumor therapies.


Assuntos
Benzofuranos/uso terapêutico , Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Neoplasias/tratamento farmacológico , Benzofuranos/farmacologia , Proliferação de Células , Humanos
8.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200965

RESUMO

Glycosylation is the most prevalent and varied form of post-translational protein modifications. Protein glycosylation regulates multiple cellular functions, including protein folding, cell adhesion, molecular trafficking and clearance, receptor activation, signal transduction, and endocytosis. In particular, membrane proteins are frequently highly glycosylated, which is both linked to physiological processes and of high relevance in various disease mechanisms. The cellular glycome is increasingly considered to be a therapeutic target. Here we describe a new strategy to compare membrane glycoproteomes, thereby identifying proteins with altered glycan structures and the respective glycosites. The workflow started with an optimized procedure for the digestion of membrane proteins followed by the lectin-based isolation of glycopeptides. Since alterations in the glycan part of a glycopeptide cause mass alterations, analytical size exclusion chromatography was applied to detect these mass shifts. N-glycosidase treatment combined with nanoUPLC-coupled mass spectrometry identified the altered glycoproteins and respective glycosites. The methodology was established using the colon cancer cell line CX1, which was treated with 2-deoxy-glucose-a modulator of N-glycosylation. The described methodology is not restricted to cell culture, as it can also be adapted to tissue samples or body fluids. Altogether, it is a useful module in various experimental settings that target glycan functions.


Assuntos
Glicoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Glucose/metabolismo , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Polissacarídeos/metabolismo , Proteômica/métodos
9.
Histochem Cell Biol ; 156(3): 253-272, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34152508

RESUMO

Wild-type lectins have distinct types of modular design. As a step to explain the physiological importance of their special status, hypothesis-driven protein engineering is used to generate variants. Concerning adhesion/growth-regulatory galectins, non-covalently associated homodimers are commonly encountered in vertebrates. The homodimeric galectin-7 (Gal-7) is a multifunctional context-dependent modulator. Since the possibility of conversion from the homodimer to hybrids with other galectin domains, i.e. from Gal-1 and Gal-3, has recently been discovered, we designed Gal-7-based constructs, i.e. stable (covalently linked) homo- and heterodimers. They were produced and purified by affinity chromatography, and the sugar-binding activity of each lectin unit proven by calorimetry. Inspection of profiles of binding of labeled galectins to an array-like platform with various cell types, i.e. sections of murine epididymis and jejunum, and impact on neuroblastoma cell proliferation revealed no major difference between natural and artificial (stable) homodimers. When analyzing heterodimers, acquisition of altered properties was seen. Remarkably, binding properties and activity as effector can depend on the order of arrangement of lectin domains (from N- to C-termini) and on the linker length. After dissociation of the homodimer, the Gal-7 domain can build new functionally active hybrids with other partners. This study provides a clear direction for research on defining the full range of Gal-7 functionality and offers the perspective of testing applications for engineered heterodimers.


Assuntos
Galectinas/metabolismo , Engenharia de Proteínas , Linhagem Celular Tumoral , Galectinas/análise , Galectinas/isolamento & purificação , Humanos , Espectrometria de Massas
10.
Biochemistry ; 60(7): 547-558, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33560106

RESUMO

Human macrophage galactose-type lectin (hMGL, HML, CD301, CLEC10A), a C-type lectin expressed by dendritic cells and macrophages, is a receptor for N-acetylgalactosamine α-linked to serine/threonine residues (Tn antigen, CD175) and its α2,6-sialylated derivative (sTn, CD175s). Because these two epitopes are among malignant cell glycan displays, particularly when presented by mucin-1 (MUC1), assessing the influence of the site and frequency of glycosylation on lectin recognition will identify determinants governing this interplay. Thus, chemical synthesis of the tandem-repeat O-glycan acceptor region of MUC1 and site-specific threonine glycosylation in all permutations were carried out. Isothermal titration calorimetry (ITC) analysis of the binding of hMGL to this library of MUC1 glycopeptides revealed an enthalpy-driven process and an affinity enhancement of an order of magnitude with an increasing glycan count from 6-8 µM for monoglycosylated peptides to 0.6 µM for triglycosylated peptide. ITC measurements performed in D2O permitted further exploration of the solvation dynamics during binding. A shift in enthalpy-entropy compensation and contact position-specific effects with the likely involvement of the peptide surroundings were detected. KinITC analysis revealed a prolonged lifetime of the lectin-glycan complex with increasing glycan valency and with a change in the solvent to D2O.


Assuntos
Lectinas Tipo C/química , Mucina-1/química , Sequência de Aminoácidos , Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/metabolismo , Calorimetria/métodos , Epitopos/metabolismo , Galactose , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Mucina-1/metabolismo , Ligação Proteica
11.
iScience ; 24(1): 101919, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33409472

RESUMO

The small 3-O-sulfated galactose head group of sulfatides, an abundant glycosphingolipid class, poses the (sphinx-like) riddle on involvement of glycan bridging by tissue lectins (sugar code). First, synthesis of head group derivatives for functionalization of amphiphilic dendrimers is performed. Aggregation of resulting (biomimetic) vesicles, alone or in combination with lactose, demonstrates bridging by a tissue lectin (galectin-4). Physiologically, this can stabilize glycolipid-rich microdomains (rafts) and associate sulfatide-rich regions with specific glycoproteins. Further testing documents importance of heterobivalency and linker length. Structurally, sulfatide recognition by galectin-8 is shown to involve sphingosine's OH group as substitute for the 3'-hydroxyl of glucose of lactose. These discoveries underscore functionality of this small determinant on biomembranes intracellularly and on the cell surface. Moreover, they provide a role model to examine counterreceptor capacity of more complex glycans of glycosphingolipids and to start their bottom-up glycotope surface programming.

12.
Biochem J ; 477(17): 3147-3165, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32766716

RESUMO

Human galectin-7 (Gal-7; also termed p53-induced gene 1 product) is a multifunctional effector by productive pairing with distinct glycoconjugates and protein counter-receptors in the cytoplasm and nucleus, as well as on the cell surface. Its structural analysis by NMR spectroscopy detected doubling of a set of particular resonances, an indicator of Gal-7 existing in two conformational states in slow exchange on the chemical shift time scale. Structural positioning of this set of amino acids around the P4 residue and loss of this phenomenon in the bioactive P4L mutant indicated cis-trans isomerization at this site. Respective resonance assignments confirmed our proposal of two Gal-7 conformers. Mapping hydrogen bonds and considering van der Waals interactions in molecular dynamics simulations revealed a structural difference for the N-terminal peptide, with the trans-state being more exposed to solvent and more mobile than the cis-state. Affinity for lactose or glycan-inhibitable neuroblastoma cell surface contact formation was not affected, because both conformers associated with an overall increase in order parameters (S2). At low µM concentrations, homodimer dissociation is more favored for the cis-state of the protein than its trans-state. These findings give direction to mapping binding sites for protein counter-receptors of Gal-7, such as Bcl-2, JNK1, p53 or Smad3, and to run functional assays at low concentration to test the hypothesis that this isomerization process provides a (patho)physiologically important molecular switch for Gal-7.


Assuntos
Galectinas/química , Multimerização Proteica , Sítios de Ligação , Linhagem Celular Tumoral , Galectinas/genética , Humanos , Isomerismo , Espectroscopia de Ressonância Magnética
13.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718059

RESUMO

DNA mismatch repair-deficient colorectal cancers (CRCs) accumulate numerous frameshift mutations at repetitive sequences recognized as microsatellite instability (MSI). When coding mononucleotide repeats (cMNRs) are affected, tumors accumulate frameshift mutations and premature termination codons (PTC) potentially leading to truncated proteins. Nonsense-mediated RNA decay (NMD) can degrade PTC-containing transcripts and protect from such faulty proteins. As it also regulates normal transcripts and cellular physiology, we tested whether NMD genes themselves are targets of MSI frameshift mutations. A high frequency of cMNR frameshift mutations in the UPF3A gene was found in MSI CRC cell lines (67.7%), MSI colorectal adenomas (55%) and carcinomas (63%). In normal colonic crypts, UPF3A expression was restricted to single chromogranin A-positive cells. SILAC-based proteomic analysis of KM12 CRC cells revealed UPF3A-dependent down-regulation of several enzymes involved in cholesterol biosynthesis. Furthermore, reconstituted UPF3A expression caused alterations of 85 phosphosites in 52 phosphoproteins. Most of them (38/52, 73%) reside in nuclear phosphoproteins involved in regulation of gene expression and RNA splicing. Since UPF3A mutations can modulate the (phospho)proteomic signature and expression of enzymes involved in cholesterol metabolism in CRC cells, UPF3A may influence other processes than NMD and loss of UPF3A expression might provide a growth advantage to MSI CRC cells.


Assuntos
Neoplasias Colorretais , Mutação da Fase de Leitura , Instabilidade Genômica , Repetições de Microssatélites , Proteínas de Neoplasias , Degradação do RNAm Mediada por Códon sem Sentido , Fosfoproteínas , Proteínas de Ligação a RNA , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteômica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
14.
Biochim Biophys Acta Gen Subj ; 1864(1): 129449, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678146

RESUMO

BACKGROUND: Galectins are multifunctional effectors, which all share absence of a signal sequence. It is not clear why galectins belong to the small set of proteins, which avoid the classical export route. METHODS: Products of recombinant galectin expression in P. pastoris were analyzed by haemagglutination, gel filtration and electrophoresis and lectin blotting as well as mass spectrometry on the level of tryptic peptides and purified glycopeptides(s). Density gradient centrifugation and confocal laser scanning microscopy facilitated localization in transfected human and rat cells, proliferation assays determined activity as growth mediator. RESULTS: Directing galectin-1 to the classical secretory pathway in yeast produces N-glycosylated protein that is active. It cofractionates and -localizes with calnexin in human cells, only Gal-4 is secreted. Presence of N-glycan(s) reduces affinity of cell binding and growth regulation by Gal-1. CONCLUSIONS: Folding and activity of a galectin are maintained in signal-peptide-directed routing, N-glycosylation occurs. This pathway would deplete cytoplasm and nucleus of galectin, presence of N-glycans appears to interfere with lattice formation. GENERAL SIGNIFICANCE: Availability of glycosylated galectins facilitates functional assays to contribute to explain why galectins invariably avoid classical routing for export.


Assuntos
Adesão Celular/genética , Galectina 1/genética , Galectina 4/genética , Sinais Direcionadores de Proteínas/genética , Animais , Transporte Biológico , Calnexina/genética , Linhagem Celular , Galectina 1/química , Galectina 4/química , Glicosilação , Humanos , Polissacarídeos/química , Polissacarídeos/genética , Dobramento de Proteína , Ratos , Transdução de Sinais/genética
15.
Cell Tissue Res ; 379(1): 13-35, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31773304

RESUMO

The emerging multifunctionality of galectins by specific protein-glycan/protein interactions explains the interest to determine their expression during embryogenesis. Complete network analysis of all seven chicken galectins (CGs) is presented in the course of differentiation of eye lens that originates from a single type of progenitor cell. It answers the questions on levels of expression and individual patterns of distribution. A qualitative difference occurs in the CG-1A/B paralogue pair, underscoring conspicuous divergence. Considering different cell phenotypes, lens fiber and also epithelial cells can both express the same CG, with developmental upregulation for CG-3 and CG-8. Except for expression of the lens-specific CG (C-GRIFIN), no other CG appeared to be controlled by the transcription factors L-Maf and Pax6. Studying presence and nature of binding partners for CGs, we tested labeled galectins in histochemistry and in ligand blotting. Mass spectrometric (glyco)protein identification after affinity chromatography prominently yielded four types of crystallins, N-CAM, and, in the cases of CG-3 and CG-8, N-cadherin. Should such pairing be functional in situ, it may be involved in tightly packing intracellular lens proteins and forming membrane contact as well as in gaining plasticity and stability of adhesion processes. The expression of CGs throughout embryogenesis is postulated to give meaning to spatiotemporal alterations in the local glycome.


Assuntos
Cristalinas/metabolismo , Galectinas/metabolismo , Cristalino/embriologia , Animais , Western Blotting , Embrião de Galinha , Cromatografia de Afinidade , Galectinas/genética , Regulação da Expressão Gênica no Desenvolvimento , Cristalino/metabolismo , Ligantes , Fatores de Transcrição Maf/metabolismo , Microscopia de Fluorescência , Fator de Transcrição PAX6/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/metabolismo
16.
Biochem J ; 476(18): 2623-2655, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551311

RESUMO

Ubiquitous occurrence in Nature, abundant presence at strategically important places such as the cell surface and dynamic shifts in their profile by diverse molecular switches qualifies the glycans to serve as versatile biochemical signals. However, their exceptional structural complexity often prevents one noting how simple the rules of objective-driven assembly of glycan-encoded messages are. This review is intended to provide a tutorial for a broad readership. The principles of why carbohydrates meet all demands to be the coding section of an information transfer system, and this at unsurpassed high density, are explained. Despite appearing to be a random assortment of sugars and their substitutions, seemingly subtle structural variations in glycan chains by a sophisticated enzymatic machinery have emerged to account for their specific biological meaning. Acting as 'readers' of glycan-encoded information, carbohydrate-specific receptors (lectins) are a means to turn the glycans' potential to serve as signals into a multitude of (patho)physiologically relevant responses. Once the far-reaching significance of this type of functional pairing has become clear, the various modes of spatial presentation of glycans and of carbohydrate recognition domains in lectins can be explored and rationalized. These discoveries are continuously revealing the intricacies of mutually adaptable routes to achieve essential selectivity and specificity. Equipped with these insights, readers will gain a fundamental understanding why carbohydrates form the third alphabet of life, joining the ranks of nucleotides and amino acids, and will also become aware of the importance of cellular communication via glycan-lectin recognition.


Assuntos
Metabolismo dos Carboidratos , Carboidratos , Lectinas , Transdução de Sinais/fisiologia , Animais , Carboidratos/química , Carboidratos/genética , Humanos , Lectinas/química , Lectinas/genética , Lectinas/metabolismo
17.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454892

RESUMO

Microsatellite unstable (MSI) colorectal cancers (CRCs) are characterized by mutational inactivation of Transforming Growth Factor Beta Receptor Type 2 (TGFBR2). TGFBR2-deficient CRCs present altered target gene and protein expression. Such cellular alterations modulate the content of CRC-derived extracellular vesicles (EVs). EVs function as couriers of proteins, nucleic acids, and lipids in intercellular communication. At a qualitative level, we have previously shown that TGFBR2 deficiency causes overall alterations in the EV protein content. To deepen the basic understanding of altered protein dynamics, this work aimed to determine TGFBR2-dependent EV protein signatures in a quantitative manner. Using a stable isotope labeling with amino acids in cell culture (SILAC) approach for mass spectrometry-based quantification, 48 TGFBR2-regulated proteins were identified in MSI CRC-derived EVs. Overall, TGFBR2 deficiency caused upregulation of several EV proteins related to the extracellular matrix and nucleosome as well as downregulation of proteasome-associated proteins. The present study emphasizes the general overlap of proteins between EVs and their parental CRC cells but also highlights the impact of TGFBR2 deficiency on EV protein composition. From a clinical perspective, TGFBR2-regulated quantitative differences of protein expression in EVs might nominate novel biomarkers for liquid biopsy-based MSI typing in the future.


Assuntos
Bioensaio , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Vesículas Extracelulares/metabolismo , Instabilidade de Microssatélites , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Aminoácidos/metabolismo , Bioensaio/métodos , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Vesículas Extracelulares/ultraestrutura , Regulação Neoplásica da Expressão Gênica , Humanos , Marcação por Isótopo , Biossíntese de Proteínas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes
18.
Int J Oncol ; 55(4): 925-937, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31432155

RESUMO

In colorectal cancer (CRC) with microsatellite instability (MSI), >90% of cases are affected by inactivating frameshift mutations of transforming growth factor ß receptor type 2 (TGFBR2). TGFBR2 deficiency is considered to drive MSI tumor progression by abrogating downstream TGF­ß signaling. This pathway can alter the expression of coding and non­coding RNAs, including microRNAs (miRNAs), which are also present in extracellular vesicles (EVs) as post­transcriptional modulators of gene expression. In our previous study, it was shown that TGFBR2 deficiency alters the protein composition and function of EVs in MSI tumors. To investigate whether mutant TGFBR2 may also affect the miRNA cargo of EVs, the present study characterized miRNAs in EVs and their parental MSI tumor cells that differed only in TGFBR2 expression status. The HCT116­TGFBR2 MSI cell line model enables the doxycycline (dox)­inducible reconstituted expression of TGFBR2 in an isogenic background (­dox, TGFBR2 deficient; +dox, TGFBR2 proficient). Small RNA sequencing of cellular and EV miRNAs showed that the majority of the miRNAs (263/471; 56%) were shared between MSI tumor cells and their EVs. Exploratory data analysis revealed the TGBFR2­dependent cluster separation of miRNA profiles in EVs and MSI tumor cells. This segregation appeared to result from two subsets of miRNAs, the expression of which were regulated in a TGFBR2­dependent manner (EVs: n=10; MSI cells: n=15). In the EV subset, 7/10 miRNAs were downregulated and 3/10 were upregulated by TGFBR2 deficiency. In the cellular subset, 13/15 miRNAs were downregulated and 2/15 miRNAs were upregulated in the TGFBR2­deficient cells. The present study emphasizes the general overlap of miRNA profiles in MSI tumor cells and their EVs, but also highlights the impact of a single tumor driver mutation on the expression of individual miRNAs, as exemplified by the downregulation of miR­381­3p in TGFBR2­deficient MSI tumor cells and their secreted EVs.


Assuntos
Neoplasias Colorretais/genética , Vesículas Extracelulares/genética , MicroRNAs/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Neoplasias Colorretais/metabolismo , Doxiciclina/farmacologia , Vesículas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Instabilidade de Microssatélites , Mutação , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo
19.
Exp Cell Res ; 379(2): 129-139, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30935948

RESUMO

Galectins are ß-galactoside binding proteins which possess a variety of functions including modulation of apoptosis, growth and differentiation. Hence, alterations in the expression profile have been associated with loss of cellular homeostasis contributing to tumor growth and progression. Though galectin-12 is significantly downregulated in several tumor entities, including colon cancer, its impact on cellular homeostasis as well as galectin-12 specific binding partners have not been identified so far. We therefore established an experimental strategy which is based on reversible cross-link immunoprecipitation to capture the galectin-12 protein interactome in colon cancer cells. By applying this approach, we identified 10 novel candidates of galectin-12 interacting proteins including the neutral amino acid exchanger SLC1A5. Remarkably, we uncovered that binding of galectin-12 to SLC1A5 significantly reduced glutamine uptake in our model cell line. Consequently, utilization of glutamine carbon for biomass synthesis was profoundly affected, suggesting galectin-12 as a novel inhibitor of glutamine anaplerosis in colon cancer cells. More detailed analysis revealed that colon cancer cells can counteract galectin-12 mediated glutamine deprivation by induction of compensatory mechanisms which facilitate adaption to low-glutamine conditions and thus survival.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Neoplasias do Colo/metabolismo , Galectinas/metabolismo , Glutamina/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Células Tumorais Cultivadas
20.
Biochim Biophys Acta Gen Subj ; 1863(5): 935-940, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30851406

RESUMO

BACKGROUND: Recognition of glycans by lectins is emerging as (patho)physiologically broadly used mode of cellular information transfer. Whereas the direct ligand-receptor contact is often already thoroughly characterized, the functional relevance of aspects of architecture such as modular design and valence of lectins is less well defined. SCOPE OF REVIEW: Following an introduction to modular lectin design, three levels of methodology are then reviewed that delineate lectin structure-activity relationships beyond glycan binding, with emphasis on domain shuffling. MAJOR CONCLUSIONS: Engineering of variants by modular transplantation facilitates versatile Nature-inspired design switches and access to new combinations with translational potential, as exemplified for human adhesion/growth-regulatory galectins. GENERAL SIGNIFICANCE: To gain an understanding of the functional significance of natural variations in quaternary structure and modular design within a protein family is a current challenge. Strategic application of methods of the described phases is a means to respond to this challenge.


Assuntos
Galectinas/metabolismo , Pesquisa Biomédica , Galectinas/química , Humanos , Polissacarídeos/química , Polissacarídeos/metabolismo , Engenharia de Proteínas , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA