RESUMO
Evidence of elevated peripheral Neurofilament light-chain (NfL) as a biomarker of neuronal injury can be utilized to reveal nonspecific axonal damage, which could reflect altered neuroimmune function. To date, only a few studies have investigated NfL as a fluid biomarker in schizophrenia primarily, though none in its putative prodrome (Clinical High-Risk, CHR) or in untreated first-episode psychosis (FEP). Further, it is unknown whether peripheral NfL is associated with 18 kDa translocator protein (TSPO), a validated neuroimmune marker. In this secondary study, we investigated for the first time (1) serum NfL in early stages of psychosis including CHR and FEP as compared to healthy controls, and (2) examined its association with brain TSPO, using [18F]FEPPA positron emission tomography (PET). Further, in the exploratory analyses, we aimed to assess associations between serum NfL and symptom severity in patient group and cognitive impairment in the combined cohort. A large cohort of 84 participants including 27 FEP (24 antipsychotic-naive), 41 CHR (34 antipsychotic-naive) and 16 healthy controls underwent structural brain MRI and [18F]FEPPA PET scan and their blood samples were obtained and assessed for serum NfL concentrations. We found no significant differences in serum NfL levels across clinical groups, controlling for age. We also found no significant association between NfL levels and brain TSPO in the entire cohort. We observed a negative association between serum NfL and negative symptom severity in CHR. Our findings suggest that neither active neuroaxonal deterioration as measured with NfL nor associated neuroimmune activation (TSPO) is clearly identifiable in an early mostly untreated psychosis sample including its putative high-risk.
RESUMO
Individuals at Clinical High Risk for Psychosis (CHR-P) demonstrate heterogeneity in clinical profiles and outcome features. However, the extent of neuroanatomical heterogeneity in the CHR-P state is largely undetermined. We aimed to quantify the neuroanatomical heterogeneity in structural magnetic resonance imaging measures of cortical surface area (SA), cortical thickness (CT), subcortical volume (SV), and intracranial volume (ICV) in CHR-P individuals compared with healthy controls (HC), and in relation to subsequent transition to a first episode of psychosis. The ENIGMA CHR-P consortium applied a harmonised analysis to neuroimaging data across 29 international sites, including 1579 CHR-P individuals and 1243 HC, offering the largest pooled CHR-P neuroimaging dataset to date. Regional heterogeneity was indexed with the Variability Ratio (VR) and Coefficient of Variation (CV) ratio applied at the group level. Personalised estimates of heterogeneity of SA, CT and SV brain profiles were indexed with the novel Person-Based Similarity Index (PBSI), with two complementary applications. First, to assess the extent of within-diagnosis similarity or divergence of neuroanatomical profiles between individuals. Second, using a normative modelling approach, to assess the 'normativeness' of neuroanatomical profiles in individuals at CHR-P. CHR-P individuals demonstrated no greater regional heterogeneity after applying FDR corrections. However, PBSI scores indicated significantly greater neuroanatomical divergence in global SA, CT and SV profiles in CHR-P individuals compared with HC. Normative PBSI analysis identified 11 CHR-P individuals (0.70%) with marked deviation (>1.5 SD) in SA, 118 (7.47%) in CT and 161 (10.20%) in SV. Psychosis transition was not significantly associated with any measure of heterogeneity. Overall, our examination of neuroanatomical heterogeneity within the CHR-P state indicated greater divergence in neuroanatomical profiles at an individual level, irrespective of psychosis conversion. Further large-scale investigations are required of those who demonstrate marked deviation.
Assuntos
Transtornos Psicóticos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética , Transtornos Psicóticos/complicaçõesRESUMO
Cannabis is now legal in many countries and while numerous studies have reported on its impact on cognition and appetite regulation, none have examined fatty acid metabolism in young cannabis users. We conducted an exploratory analysis to evaluate cannabis impact on fatty acid metabolism in cannabis users (n = 21) and non-cannabis users (n = 16). Serum levels of some saturated and monounsaturated fatty acids, including palmitic, palmitoleic, and oleic acids were higher in cannabis users compared to nonusers. As palmitic acid can be derived from diet or lipogenesis from sugars, we evaluated lipogenesis using a de novo lipogenesis index (palmitate/linoleic acid) and carbon-specific isotope analysis, which allows for the determination of fatty acid 13 C signature. The significantly higher de novo lipogenesis index in the cannabis users group along with a more enriched 13 C signature of palmitic acid suggested an increase in lipogenesis. In addition, while serum glucose concentration did not differ between groups, pyruvate and lactate were lower in the cannabis user group, with pyruvate negatively correlating with palmitic acid. Furthermore, the endocannabinoid 2-arachidonoylglycerol was elevated in cannabis users and could contribute to lipogenesis by activating the cannabinoid receptor 1. Because palmitic acid has been suggested to increase inflammation, we measured peripheral cytokines and observed no changes in inflammatory cytokines. Finally, an anti-inflammatory metabolite of palmitic acid, palmitoylethanolamide was elevated in cannabis users. Our results suggest that lipogenic activity is increased in cannabis users; however, future studies, including prospective studies that control dietary intake are required.
Assuntos
Cannabis , Lipogênese , Estudos de Casos e Controles , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Ácido Palmítico , Estudos Prospectivos , Ácido PirúvicoRESUMO
BACKGROUND: Alterations in the immune system, particularly C4A, have been implicated in the pathophysiology of schizophrenia. C4A promotes synapse elimination by microglia in preclinical models; however, it is unknown whether this process is also present in living humans and how it affects brain morphology. METHODS: Participants (N = 111; 33 patients with psychosis, 37 individuals at clinical high risk, and 41 healthy control subjects) underwent a TSPO [18F]FEPPA positron emission tomography scan and a magnetic resonance imaging scan. Brain C4A expression was genetically predicted as a function of the dosage of each of 4 structural elements (C4AL, C4BL, C4AS, C4BS). RESULTS: Higher genetically predicted brain C4A expression was associated with higher brain microglial marker (TSPO) and altered hippocampal morphology, including reduced surface area and medial displacement in the CA1 area. This study is the first to quantify genetically predicted brain C4A expression in individuals at clinical high risk, showing significantly lower C4A in individuals at clinical high risk compared with healthy control subjects. We also showed a robust effect of sex on genetically predicted brain C4A expression and effects of both sex and cannabis use on brain TSPO. CONCLUSIONS: This study shows for the first time complement system (C4A) coupling with a microglial marker (TSPO) and hippocampal morphology in living human brain. These findings pave the way for future research on the interaction between C4A and glial cell function, which has the potential to inform the disease mechanism underlying psychosis and schizophrenia.
Assuntos
Transtornos Psicóticos , Receptores de GABA , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Microglia/metabolismo , Tomografia por Emissão de Pósitrons , Piridinas , Receptores de GABA/genética , Receptores de GABA/metabolismoRESUMO
Personality has been correlated with differences in cytokine expression, an indicator of peripheral inflammation; however, the associations between personality and central markers of inflammation have never been investigated in vivo in humans. Microglia are the resident macrophages of the central nervous system, and the first responders to tissue damage and brain insult. Microglial activation is associated with elevated expression of translocator protein 18kDa (TSPO), which can be imaged with positron emission tomography (PET) to quantify immune activation in the human brain. This study aimed to investigate the association between personality and TSPO expression across the psychosis spectrum. A total of 61 high-resolution [18F]FEPPA PET scans were conducted in 28 individuals at clinical high risk (CHR) for psychosis, 19 First-Episode Psychosis (FEP), and 14 healthy volunteers (HVs), and analyzed using a two-tissue compartment model and plasma input function to obtain a total volume of distribution (VT) as an index of brain TSPO expression (controlling for the rs6971 TSPO polymorphism). Personality was assessed using the Revised NEO Personality Inventory (NEO-PI-R). We found TSPO expression to be specifically associated with neuroticism. A positive association between TSPO expression and neuroticism was found in HVs, in contrast to a nonsignificant, negative association in CHR and significant negative association in FEP. The TSPO-associated neuroticism trait indicates an unexplored connection between neuroimmune activation and personality that varies across the psychosis spectrum.
RESUMO
Neuroinflammation is thought to be important in the progression of Alzheimer's disease (AD). To evaluate cerebral inflammation radioligands that target TSPO, a translocator protein strongly expressed in microglia and macrophages during inflammation, can be used in conjunction with positron emission tomography (PET) imaging. In AD patients, neuroinflammation is up-regulated compared to both healthy volunteers as well as to subjects with amnestic Mild Cognitive Impairment. Peripheral biomarkers, such as serum cytokines and total fatty acids (FAs), can also be indicative of the inflammatory state of subjects with neurodegenerative disorders. To understand whether peripheral biomarkers are predictive of neuroinflammation we conducted a secondary exploratory analysis of two TSPO imaging studies conducted in subjects with AD, aMCI and aged matched healthy volunteers. We examined the association between candidate peripheral biomarkers (including amyloid beta, cytokines and serum total fatty acids) with brain TSPO levels. Our results showed that serum IL-6 and IL-10 are higher in AD compared to the aMCI and healthy volunteers while levels of some fatty acids are modulated during the disease. A limited number of associations were observed between region-specific inflammation and fatty acids in aMCI patients, and between amyloid beta 42 and brain inflammation in AD, however no associations were present with systemic cytokines. Our study suggests that while TSPO binding and systemic IL-6 and IL-10 were elevated in AD, serum amyloid beta, cytokines and fatty acids were generally not predictive of the disease nor correlated with neuroinflammation.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico por imagem , Citocinas , Ácidos Graxos , Humanos , Tomografia por Emissão de Pósitrons , Receptores de GABARESUMO
Psychosis is associated with abnormal structural changes in the brain including decreased regional brain volumes and abnormal brain morphology. However, the underlying causes of these structural abnormalities are less understood. The immune system, including microglial activation, has been implicated in the pathophysiology of psychosis. Although previous studies have suggested a connection between peripheral proinflammatory cytokines and structural brain abnormalities in schizophrenia, no in-vivo studies have investigated whether microglial activation is also linked to brain structure alterations previously observed in schizophrenia and its putative prodrome. In this study, we investigated the link between mitochondrial 18â¯kDa translocator protein (TSPO) and structural brain characteristics (i.e. regional brain volume, cortical thickness, and hippocampal shape) in key brain regions such as dorsolateral prefrontal cortex and hippocampus of a large group of participants (Nâ¯=â¯90) including individuals at clinical high risk (CHR) for psychosis, first-episode psychosis (mostly antipsychotic-naïve) patients, and healthy volunteers. The participants underwent structural brain MRI scan and [18F]FEPPA positron emission tomography (PET) targeting TSPO. A significant [18F]FEPPA binding-by-group interaction was observed in morphological measures across the left hippocampus. In first-episode psychosis, we observed associations between [18F]FEPPA VT (total volume of distribution) and outward and inward morphological alterations, respectively, in the dorsal and ventro-medial portions of the left hippocampus. These associations were not significant in CHR or healthy volunteers. There was no association between [18F]FEPPA VT and other structural brain characteristics. Our findings suggest a link between TSPO expression and alterations in hippocampal morphology in first-episode psychosis.