Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 173: 106170, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367572

RESUMO

The purpose of this work is to explore the preparation of nanofibrous orally dispersible films (ODFs) by needleless electrospinning from the active pharmaceutical ingredient (API) Tadalafil using particles suspended in a solution of polymers and other excipients. The prepared films were characterized by a combination of scanning electron microscopy, mechanical tests, measurements of the disintegration time and dissolution characteristic, X-ray diffraction, and differential scanning calorimetry. Furthermore, we investigated the impact of lamination pressures in the range of 0 to 5 bars combined with films at various relative humidity values on the mechanical properties of the ODF. An increase in lamination pressure resulted in higher Young's modulus values, with the maximum value observed for a sample laminated at a pressure of 5 bar and the maximum stress and strain of the prepared ODF at a lamination pressure of 1.2 bar. Moreover, there was a significant increase in the disintegration time with increase in lamination pressure. The disintegration time ranged from 0.35 s for non-laminated samples to 12 s for samples laminated at a pressure of 5 bar. On the contrary, the lamination pressure did not reveal to have any impact on the dissolution kinetics. These results confirmed that the lamination pressure can improve the processability of ODFs without affecting the API dissolution kinetics.


Assuntos
Química Farmacêutica , Nanofibras , Varredura Diferencial de Calorimetria , Química Farmacêutica/métodos , Excipientes/química , Solubilidade
2.
Nanomaterials (Basel) ; 11(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924537

RESUMO

Platelet lysate (PL) provides a natural source of growth factors and other bioactive molecules, and the local controlled release of these bioactive PL components is capable of improving the healing of chronic wounds. Therefore, we prepared composite nanofibrous meshes via the needleless electrospinning technique using poly(vinyl alcohol) (PVA) with a high molecular weight and with a high degree of hydrolysis with the incorporated PL (10% w/w). The morphology, wettability and protein release from the nanofibers was then assessed from the resulting composite PVA-PL nanomats. The bioactivity of the PVA-PL nanomats was proved in vitro using HaCaT keratinocytes, human saphenous endothelial cells (HSVECs) and 3T3 fibroblasts. The PVA-PL supported cell adhesion, proliferation, and viability. The improved phenotypic maturation of the HaCaT cells due to the PVA-PL was manifested via the formation of intermediate filaments positive for cytokeratin 10. The PVA-PL enhanced both the synthesis of the von Willebrand factor via HSVECs and HSVECs chemotaxis through membranes with 8 µm-sized pores. These results indicated the favorable effects of the PVA-PL nanomats on the three cell types involved in the wound healing process, and established PVA-PL nanomats as a promising candidate for further evaluation with respect to in vivo experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA